R语言实现中介分析(1)

中介分析,也称为介导分析,是统计学中的一种方法,它用于评估一个或多个中介变量(也称为中间变量)在自变量和因变量之间关系中所起的作用。换句话说,中介分析用于探索自变量如何通过中介变量影响因变量的机制。

虽然中介效应的存在可能意味着某种因果关系机制,但它并不能直接证明因果关系。因此,在解释中介分析结果时,需要考虑其他可能的解释和变量之间的关系。

#Mediatoion analysis
#install.packages("mediation")
help(package="mediation")
library(mediation)
data(jobs)
#线性结果和中介模型
b <- lm(job_seek ~ treat + econ_hard + sex + age, data=jobs)#这个模型用treat(治疗或干预变量)、econ_hard(经济困难)、sex(性别)和age(年龄)来预测job_seek(求职)。
c <- lm(depress2 ~ treat + job_seek + econ_hard + sex + age, data=jobs)#这个模型用相同的变量treat、econ_hard、sex和age,以及job_seek(现在作为中介变量)来预测depress2(抑郁程度)。
# Estimation via quasi-Bayesian approximation
contcont <- mediate(b, c, sims=50, treat="treat", mediator="job_seek")#这个模型用相同的变量treat、econ_hard、sex和age,以及job_seek(现在作为中介变量)来预测depress2(抑郁程度)。
summary(contcont)#查看中介分析的结果摘要。这个摘要通常包括中介效应的估计值、标准误、置信区间,以及直接效应和间接效应(通过中介变量的效应)的估计。
plot(contcont)#绘制中介分析的结果图
#ACME (Average Causal Mediation Effect): 这是中介变量(在这里是job_seek)的平均因果中介效应,表示处理变量(treat)通过中介变量对结果变量(depress2)的间接影响。
#ADE (Average Direct Effect): 这是处理变量对结果变量的直接效应,即在控制中介变量后的效应。
#Total Effect: 这是处理变量对结果变量的总效应,即直接效应和间接效应之和。

 

这个因果中介分析的结果提供了关于中介变量效应的一些重要估计和置信区间。以下是对结果的解读:

ACME (Average Causal Mediation Effect):
估计值(Estimate)为 -0.0167,这意味着中介变量(可能是求职行为job_seek)平均而言在处理变量(treat)和结果变量(抑郁程度depress2)之间产生了负的间接效应。换句话说,处理通过中介变量减少了抑郁程度,但这一效应相对较小。

95%置信区间(95% CI Lower 和 95% CI Upper)为 [-0.0360, 0.00],这意味着我们不能排除ACME为零的可能性,因为零包含在这个区间内。

p-值为0.20,说明ACME的估计值在统计上并不显著,即我们不能有充足的证据认为中介变量产生了显著的间接效应。

ADE (Average Direct Effect):
估计值为 -0.0424,表示处理变量对结果变量的直接效应(即控制中介变量后的效应)是负的,但同样相对较小。

95%置信区间为 [-0.1042, 0.03],这个区间包括零,因此直接效应在统计上并不显著。

p-值为0.40,进一步支持了直接效应不显著的观点。

Total Effect:
估计值为 -0.0591,表示处理变量对结果变量的总效应是负的。

95%置信区间为 [-0.1294, 0.02],这个区间也包括零,因此总效应在统计上并不显著。

p-值为0.20,与ACME的p-值相同,进一步表明我们没有足够的证据认为总效应是显著的。

Prop. Mediated (Proportion Mediated):
这是中介效应占总效应的比例。估计值为 0.2152,意味着中介变量解释了约21.52%的总效应。但由于置信区间为 [-0.7867, 1.86],这个比例非常不确定,且包括负数,因此我们不能得出关于中介效应比例的具体结论。

p-值为0.24,表明这个比例在统计上并不显著。

Sample Size Used:
分析使用的样本大小为899,这是一个相对较大的样本,通常可以提供较为稳定的估计,但在这里由于效应本身可能较小或不存在,因此即使样本量相对较大,我们仍然不能得出显著的结论。

Simulations:
分析过程中使用了50次模拟来估计标准误和置信区间。模拟次数是一个相对较小的数字,但根据具体情境和计算资源,这可能是一个合理的选择。增加模拟次数可能会提供更准确的估计,但也会增加计算时间。

综上所述,这个因果中介分析的结果并没有提供足够的证据来支持中介变量(job_seek)在处理变量(treat)和结果变量(depress2)之间产生了显著的间接效应。同时,直接效应和总效应也都不显著。因此,我们不能基于这些结果得出关于中介效应存在或重要性的明确结论。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/750070.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker login 阿里云失败??

docker login 阿里云失败&#xff1f;&#xff1f; 首先参考 阿里云官方文档《Docker登录、推送和拉取失败常见问题》 看看是否是下面提到的情况&#xff1a; 我遇到的情况是超时: [rootk8snode1 software]# sudo docker login --usernametyleryun registry.cn-hangzhou.ali…

【leetcode热题】比较版本号

难度&#xff1a; 中等通过率&#xff1a; 22.1%题目链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 题目描述 比较两个版本号 version1 和 version2。 如果 version1 > version2 返回 1&#xff0c;如果 version1 < version2 返回 -1&#xff0c; 除此之外…

StarRocks 易用性全面提升:数据导入可以如此简单

作为新一代分析型数据库&#xff0c;StarRocks 一直因性能卓越、功能全面而深受广大用户喜爱。在追求功能和性能的同时&#xff0c;易用性方面&#xff0c;StarRocks 也在一直围绕一线运维人员的作业细节持续提升&#xff0c;尤其从 V3.0 起&#xff0c;社区投入大量开发资源全…

数据仓库的设计开发应用(三)

目录 五、数据仓库的实施&#xff08;一&#xff09;数据仓库的创建&#xff08;二&#xff09;数据抽取转换加载 六、数据仓库系统的开发&#xff08;一&#xff09;开发任务&#xff08;二&#xff09;开发方法&#xff08;三&#xff09;系统测试 七、数据仓库系统的应用&am…

Jenkins: 配置自动化发布脚本

Jenkins 配置自动化发布脚本 在Jenkins的 一个工程项目任务中, 点击左侧 配置 栏在下面的 Build Steps 中&#xff0c;点击上面的 可用的环境变量列表 找到里面有一个 WORKSPACE 的变量这个变量指向我们的jenkins下工程项目源码的目录需要把这个变量利用起来 在 Build Steps 下…

Spring Web MVC入门(2)

学习Spring MVC Postman介绍 在软件工程中, 我们需要具有前后端分离的思想, 以降低耦合性. 但是在测试后端代码时,我们还得写前端代码测试,这是个令人头疼的问题. 那么我们如何测试自己的后端程序呢, 这就用到了一个工具: Postman. 界面介绍: 传参的介绍 1.普通传参, 也就…

0基础 三个月掌握C语言(11)

字符函数和字符串函数 为了方便操作字符和字符串 C语言标准库中提供了一系列库函数 接下来我们学习一下这些函数 字符分类函数 C语言提供了一系列用于字符分类的函数&#xff0c;这些函数定义在ctype.h头文件中。这些函数通常用于检查字符是否属于特定的类别&#xff0c;例如…

阿里EMO模型:AI生成表情丰富的视频

引言 在数字多媒体的时代&#xff0c;人们对于互动性和个性化视频内容的需求不断增长。阿里巴巴的EMO&#xff08;Emote Portrait Alive&#xff09;模型&#xff0c;作为一项前沿的人工智能技术&#xff0c;正引领着这一领域的革新之路。 EMO模型概述 EMO模型是阿里巴巴智能计…

纽约时报起诉OpenAI和微软将决定未来LLM的发展

《纽约时报》诉OpenAI和微软案对未来LLM发展的重大影响 案件背景 《纽约时报》(NYT)近期对OpenAI和微软提起诉讼&#xff0c;指控OpenAI未经授权使用其受版权保护的内容来训练其AI模型&#xff0c;包括ChatGPT。NYT声称&#xff0c;OpenAI使用了数百万篇其文章&#xff0c;这…

linux下重启ORACLE

切换到oracle用户 su - oracle 登录oracle sqlplus / as sysdba 启动数据库 startup 退出数据库 exit 启动监听 lsnrctl start FINISH

论文阅读——Rein

Stronger, Fewer, & Superior: Harnessing Vision Foundation Models for Domain Generalized Semantic Segmentation 一、引言 是一个对Domain Generalized Semantic Segmentation (DGSS)任务的视觉大模型的微调方法&#xff0c;即Rein。 Rein 专为 DGSS 任务量身定制&a…

matlab 眼球图像处理血管提取

1、内容简介 略 69-可以交流、咨询、答疑 2、内容说明 眼球图像处理血管提取 lab颜色空间提取眼球边缘、形态学操作 八邻域搜索算法 pUnImage&#xff0c;任意一点的坐标记为p(x,y),该点周围八邻域点的坐标记为p0(x,y)&#xff0c;p1(x,y)&#xff0c;p2(x,y)&#xff0c;…

利用express从0到1搭建后端服务

目录 步骤一&#xff1a;安装开发工具步骤二&#xff1a;安装插件步骤三&#xff1a;安装nodejs步骤四&#xff1a;搭建启动入口文件步骤五&#xff1a;启动服务器总结 在日常工作中&#xff0c;有很多重复和繁琐的事务是可以利用软件进行提效的。但每个行业又有自己的特点&…

【AI】实现在本地Mac,Windows和Mobile上运行Llama2模型

【AI】实现在本地Mac,Windows和Mobile上运行Llama2模型 目录 【AI】实现在本地Mac,Windows和Mobile上运行Llama2模型**Llama 2模型是什么?****技术规格和能力****Llama 2中的专门模型****在人工智能开发中的意义****如何在本地使用Llama 2运行Llama.cpp****Llama.cpp的设置*…

【Redis】基于Redis实现查询缓存

1.缓存更新策略 主动更新用的最多。  主动更新一般是由缓存的调用者&#xff0c;在更新数据库的同时&#xff0c;更新缓存。 操作缓存和数据库时有三个问题需要考虑&#xff1a; 删除缓存还是更新缓存&#xff1f; 更新缓存&#xff1a;每次更新数据库都更新缓存&#xff0…

mac电脑修改终端zsh显示的用户名

电脑名称一直没有修改&#xff0c;所以电脑名称都是Apple的MacBook Pro&#xff0c;如下图所示&#xff1a; mac电脑终端显示用户名太长一点也不美观&#xff0c;而且占用很长的行&#xff0c;浪费空间&#xff0c;可以通过修改来调整要显示什么内容&#xff1a; 方式一 要想换…

有向图的DFS(c++题解)

题目描述 给定一个有向图(不一定连通)&#xff0c;有N个顶点&#xff0c;M条边&#xff0c;顶点从1..N依次编号&#xff0c;求出字典序最小的深度优先搜索顺序。 输入格式 第1行&#xff1a;2个整数&#xff0c;N&#xff08;1≤N≤200&#xff09;和M&#xff08;2≤M≤500…

2核4g服务器够用吗?

2核4G服务器够用吗&#xff1f;够用。阿腾云以2核4G5M服务器搭建网站为例&#xff0c;5M带宽下载速度峰值可达640KB/秒&#xff0c;阿腾云以搭建网站为例&#xff0c;假设优化后平均大小为60KB&#xff0c;则5M带宽可支撑10个用户同时在1秒内打开网站&#xff0c;并发数为10&am…

C#使用Entity Framework Core处理数据库(三)

Entity Framework Core&#xff08;EF Core&#xff09;是一个轻量级、跨平台的对象关系映射&#xff08;ORM&#xff09;框架&#xff0c;用于在.NET应用程序中处理数据库操作。它提供了一种将数据库中的数据映射到.NET对象模型的方法&#xff0c;使开发人员可以使用面向对象的…

Day66:WEB攻防-Java安全SPEL表达式SSTI模版注入XXEJDBCMyBatis注入

目录 JavaSec搭建 Hello-Java-Sec搭建 Java安全-SQL注入-JDBC&MyBatis Java安全-XXE注入-Reader&Builder Java安全-SSTI模版-Thymeleaf&URL Java安全-SPEL表达式-SpringBoot框架 知识点&#xff1a; 1、Java安全-SQL注入-JDBC&MyBatis 2、Java安全-XXE注…