生成对抗网络(GANs):技术演化与广泛应用

目录

  • 前言
  • 1 技术原理
    • 1.1 基本构成
    • 1.2 训练过程
    • 1.3 数学原理
  • 2 应用领域
    • 2.1 图像合成
    • 2.2 数据增强
    • 2.3 风格迁移
    • 2.4 超分辨率
  • 结论

前言

生成对抗网络(GANs),自2014年由Ian Goodfellow及其同事首次提出以来,已经引起了广泛的关注和研究。作为一种强大的机器学习框架,GANs能够生成极为逼真的图片、视频、音频等数据。它们通过两个神经网络的对抗过程进行学习,进而达到生成高质量数据的目的。本文将从技术原理和应用领域两个角度,详细介绍GANs的发展历程、现状及其在多个行业中的应用。

1 技术原理

在这里插入图片描述

1.1 基本构成

Generative Adversarial Networks(GANs)的基本构成包括生成器(Generator)和鉴别器(Discriminator)两部分。生成器负责产生尽可能逼真的数据,以“欺骗”鉴别器;而鉴别器则致力于区分生成的数据和真实数据。这两个网络相互竞争,通过不断优化,最终使得生成器能够生成高度逼真的数据。

1.2 训练过程

GANs的训练过程是一种博弈过程,其中生成器和鉴别器轮流进行优化。一开始,生成器产生初始的假数据,鉴别器学习如何区分真实数据和假数据。随着时间推移,生成器逐渐学会生成更逼真的数据,而鉴别器也在不断提高其识别真伪的能力。这个过程持续进行,直到达到一个平衡点,即鉴别器无法再有效地区分真实数据和生成数据。
在这里插入图片描述

1.3 数学原理

GANs的核心是一个最小化最大化问题(minimax game),其目标函数如下所示:
m i n G max ⁡ D V ( D , G ) = E x ∼ p d a t a ( x ) [ log ⁡ D ( x ) ] + E z ∼ p z ( z ) [ log ⁡ ( 1 − D ( G ( z ) ) ) ] min_G \max_D V(D, G) = \mathbb{E}_{x\sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z\sim p_z(z)}[\log(1 - D(G(z)))] minGDmaxV(D,G)=Expdata(x)[logD(x)]+Ezpz(z)[log(1D(G(z)))]
其中,(D(x))表示鉴别器判断输入(x)来自真实数据的概率,(G(z))表示生成器根据输入噪声(z)生成的数据。这个公式表达了鉴别器和生成器之间的对抗关系,通过对抗优化来训练生成器和鉴别器的参数。

2 应用领域

2.1 图像合成

GANs在图像合成领域表现出色。通过生成器网络生成逼真的图像,GANs已经在艺术创作、游戏设计以及电影制作等领域得到了广泛应用。生成的图像可以是人脸、景观等,具有高质量和逼真度。
在这里插入图片描述

GANs的优势在于能够生成具有高度真实感的图像,为各种应用场景提供了丰富的可选素材。

2.2 数据增强

在数据稀缺的领域,例如医疗影像,GANs能够生成额外的训练样本,从而帮助改善机器学习模型的性能。通过生成合成数据,GANs可以使模型更加鲁棒和准确。

GANs生成的数据与真实数据相似度高,可以有效地扩充数据集,提高模型的泛化能力。

2.3 风格迁移

GANs具有风格迁移的能力,可以将一种图像的风格转换为另一种。例如,将现实世界的照片转换为名画的风格,或者改变照片的季节和时间等。这为图像处理和创意设计提供了新的可能性。
在这里插入图片描述

风格迁移技术使得用户可以以创新的方式处理图像,为图像编辑和美化提供了更多选择。

2.4 超分辨率

GANs被广泛用于图像和视频的超分辨率处理。它能够从低分辨率的图像中恢复出高分辨率版本,这对于提高图像质量、改善视觉体验以及修复老旧影视资料具有重要意义。

通过提高图像的分辨率,GANs可以提升图像的清晰度和细节,使得图像更加逼真和精细。

结论

生成对抗网络自诞生以来,以其强大的数据生成能力,不断拓宽技术和应用的边界。从艺术创作到医学研究,从娱乐产业到科技创新,GANs的应用领域正在不断扩大。尽管如此,GANs在生成数据时的伦理和安全问题也不容忽视。未来,我们期待看到更多关于GANs的创新研究,以及对其潜在风险的有效管理和解决方案。

GANs的发展和应用展现了人工智能领域的巨大潜力,同时也提醒我们关注与之相关的伦理和安全问题。随着技术的不断进步,我们期待GANs能够在创造价值的同时,也能找到平衡技术创新和社会责任的方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/748713.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript进阶:js的一些学习笔记-4

文章目录 1. 拷贝1. 浅拷贝2. 深拷贝 2. 异常处理 1. 拷贝 这里指的拷贝是指拷贝引用类型的数据(对象) 1. 浅拷贝 拷贝对象:Object.assign() 或者 {…obj} 展开运算符 const obj {name:liuze,age:23 } const o {...obj}; o.age 22; console.log(o); console.…

Sparse Convolution 讲解

文章目录 1. 标准卷积与Sparse Conv对比(1)普通卷积(2) 稀疏卷积(3) 改进的稀疏卷积(subm)2 Sparse Conv 官方API3. Sparse Conv 计算3. 1 Sparse Conv 计算流程3. 2 案例3.2.1 普通稀疏卷积3.2.2 subm模式的稀疏卷积3D点云数据非常稀疏,尤其体素化处理后(比如200k的点放…

【spring】@PropertySource 注解学习

PropertySource介绍 PropertySource是Spring框架中的一个注解,主要用于Java配置类中,用于引入额外的属性文件,以便在Spring应用上下文中使用这些属性。 在Spring 3.1引入Java配置后,我们可以通过Configuration注解的类和Bean注解…

Windows11企业版安装WSL2和Ubuntu发布版(避坑)

背景 win10企业版升级win11企业版后,安装WSL2,最后安装WSL的Ubuntu发布版,尝试网上各种方法,还是出现文章第三节所写的问题,差点被这问题搞放弃了,全网少有针对这个问题的答案,有也不顶用&…

【python】自动化工具Selenium与playwright去除webdriver检测

对这个世界如果你有太多的抱怨 跌倒了就不敢继续往前走 为什么人要这么的脆弱 堕落 请你打开电视看看 多少人为生命在努力勇敢的走下去 我们是不是该知足 珍惜一切 就算没有拥有 🎵 周杰伦《稻香》 # -*- coding:utf-8 -*- import timefrom s…

k8s-高可用etcd集群 26

reset掉k8s2,k8s3,k8s4节点 清理完网络插件后重启 快速创建一个k8s集群 修改初始化文件 添加master节点 备份 查看etcd配置 启动docker 将etcd二进制命令从容器拷贝到本机 备份 查看快照状态 删除集群资源 恢复 停掉所有的核心组件 从快照恢复 重启所有…

知识蒸馏Matching logits与RocketQAv2

知识蒸馏Matching logits 公式推导 刚开始的怎么来,可以转看下面证明梯度等于输出值-标签y C是一个交叉熵,我们要求解的是这个交叉熵对的这个梯度。就是你可以理解成第个类别的得分。就是student model,被蒸馏的模型,它所输出的…

RTT——stm32f103的can总线通信

1.创建工程 2.配置时钟和引脚 引脚配置使能CAN 时钟配置,采用外部高速时钟 生成MDK工程后复制相关初始化函数到RTT-studio中 将void HAL_CAN_MspInit(CAN_HandleTypeDef* canHandle)函数复制至broad.c文件中 将时钟配置函数复制到drv_clk.c中,只复制函数…

C语言—打印如图矩阵

输出矩阵 在一个二维数组中形成并输出如下矩阵: #include <stdio.h> main() { int i,j,a[5][5];for(i0;i<4;i)for(j0;j<4;j)if(i<j) a[i][j]1;else a[i][j]i-j1;for(i0;i<4;i){ for(j0;j<4;j)printf("%d ",a[i][j]);printf("…

Xilinx FPGA模式配置

Xilinx FPGA模式配置 Xilinx UltraScale FPGA有7种配置模式&#xff0c;由模式输入引脚M[2:0]决定。七种模式如图1所示。 图1 7种配置模式 7种模式可分为3大类&#xff0c; 1、JTAG模式&#xff08;可归为从模式&#xff09;&#xff1b; 2、主模式&#xff1b; 3、从模式…

影响交易收益的因素有哪些?

在尝试做交易时&#xff0c;你可能会问自己一个问题&#xff1a;交易一天能赚多少钱&#xff1f;“如果我全职投入交易&#xff0c;一天能赚多少&#xff1f;”或者更广泛地说&#xff0c;“交易能为我带来怎样的财富&#xff1f;”这些问题本质上都充满了不确定性&#xff0c;…

Spring Cloud Alibaba微服务从入门到进阶(一)(SpringBoot三板斧、SpringBoot Actuator)

Springboot三板斧 1、加依赖 2、写注解 3、写配置 Spring Boot Actuator Spring Boot Actuator 是 Spring Boot 提供的一系列用于监控和管理应用程序的工具和服务。 SpringBoot导航端点 其中localhost:8080/actuator/health是健康检查端点&#xff0c;加上以下配置&#xf…

pytorch之诗词生成--2

先上代码: # -*- coding: utf-8 -*- # File : dataset.py # Author : AaronJny # Time : 2019/12/30 # Desc : 构建数据集 from collections import Counter import math import numpy as np import tensorflow as tf import settingsclass Tokenizer:""&…

邮件自动化:简化Workplace中的操作

电子邮件在职场中的使用对于企业和组织的日常活动起着重要的作用。电子邮件不再仅仅是一种通信方式&#xff0c;已经成为现代企业和组织实施日常运营的关键要素。 除了通信&#xff0c;电子邮件对于需求生成、流程工作流、交易审批以及各种其他与业务相关的活动至关重要。在当…

springboot高校门诊管理系统

摘 要 相比于以前的传统手工管理方式&#xff0c;智能化的管理方式可以大幅降低高校门诊的运营人员成本&#xff0c;实现了高校门诊管理的标准化、制度化、程序化的管理&#xff0c;有效地防止了高校门诊管理的随意管理&#xff0c;提高了信息的处理速度和精确度&#xff0c;能…

MySQL中的索引失效情况介绍

MySQL中的索引是提高查询性能的重要工具。然而&#xff0c;在某些情况下&#xff0c;索引可能无法发挥作用&#xff0c;甚至导致查询性能下降。在本教程中&#xff0c;我们将探讨MySQL中常见的索引失效情况&#xff0c;以及它们的特点和简单的例子。 1. **索引失效的情况** …

Linux:深入文件系统

一、Inode 我们使用ls -l的时候看到的除了看到文件名&#xff0c;还看到了文件元数据。 [rootlocalhost linux]# ls -l 总用量 12 -rwxr-xr-x. 1 root root 7438 "9月 13 14:56" a.out -rw-r--r--. 1 root root 654 "9月 13 14:56" test.c 每行包含7列&…

【JavaEE初阶系列】——多线程 之 创建线程

目录 &#x1f388;认识Thread类 &#x1f388;Sleep &#x1f388;创建线程 &#x1f6a9;继承Thread&#xff0c;重写run方法 &#x1f6a9;实现Runnable接口&#xff0c;重写run方法 &#x1f6a9;使用匿名内部类创建 Thread 子类对象 &#x1f6a9;使用匿名内部类&…

非空约束

oracle从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/135209645 非空约束 所谓的非空约束&#xff0c;指的是表中的某一个字段的内容不允许为空。如果要使用非空约束&#xff0c;只需要在每个列的后面利用“NOT NULL”声明即可 -- 删除数…

【Preprocessing数据预处理】之Scaler

在机器学习中&#xff0c;特征缩放是训练模型前数据预处理阶段的一个关键步骤。不同的缩放器被用来规范化或标准化特征。这里简要概述了您提到的几种缩放器&#xff1a; StandardScaler StandardScaler 通过去除均值并缩放至单位方差来标准化特征。这种缩放器假设特征分布是正…