GCNv2_SLAM-CPU详细安装教程(ubuntu18.04)

GCNv2_SLAM-CPU详细安装教程-ubuntu18.04

  • 前言
  • 一、安装第三方库
    • 1.安装Pangolin
    • 2.安装OpenCV
    • 3.安装Eigen
    • 4.安装Pytorch(c++)
  • 二、安装以及运行GCNv2_SLAM
    • 1.安装编译GCNv2_SLAM
    • 2.单目模式运行演示案例
  • 总结

前言

paper:https://arxiv.org/pdf/1902.11046.pdf
githup::https://github.com/jiexiong2016/GCNv2_SLAM?tab=readme-ov-file
最近在ubuntu18.04上配置GCNv2_SLAM运行环境时踩了很多坑,在这期间查阅了很多资料和博客,于是想对安装过程进行总结,方便自己反复查阅以及分享经验避免大家重复踩坑。
博主是用docker在ubuntu18.04容器中安装的GCNv2_SLAM,已经打包成docker的镜像文件分享给大家。

因为博主的显卡安装不了低版本的cuda,对应低版本的pytorch只能使用cpu,因此暂时讲解cpu版本的安装教程

# 查看ubuntu版本号
lsb_release -a


安装前的准备:安装cmake、git 、gcc 和g++

# 更新apt库,更新软件列表
sudo apt-get update

apt-get源修改参考

# 安装git,用于从Github上克隆项目到本地
sudo apt-get install git
# 安装cmake,用于程序的编译
sudo apt-get install cmake
# 安装gcc和g++,安装c和c++编译器
sudo apt-get install gcc g++

一、安装第三方库

# 建立一个GCNv2_SLAM的文件夹,建议将所有的第三方库以及GCNv2_SLAM源码都放入其中
mkdir GCNv2_SLAM

可能需要安装百度云:

# 安装百度云,xxx.deb是自己下载的版本
sudo dpkg -i baidunetdisk_4.17.7_amd64.deb

1.安装Pangolin

Pangolin是对OpenGL进行封装的轻量级的OpenGL输入/输出和视频显示的库。
1.安装依赖项

sudo apt-get install libgl1-mesa-dev
sudo apt-get install libglew-dev
sudo apt-get install libboost-dev libboost-thread-dev libboost-filesystem-dev
sudo apt-get install libpython2.7-dev

2.安装 Pangolin
通过链接或通过git下载Pangolin源码(不推荐,问题很多)

# 需要科学上网
git clone --recursive https://github.com/stevenlovegrove/Pangolin.git

强烈推荐Pangolin 0.6(稳定版) 提取码:45bo

# 解压并重命名为Pangolin
unzip Pangolin-0.6.zip && mv Pangolin-0.6 Pangolin
# 开始编译和安装
cd Pangolin
mkdir build && cd build 
cmake -DCPP11_NO_BOOST=1 ..
sudo make install

3.验证安装是否完成

# 验证
cd ../examples/HelloPangolin
mkdir build && cd build
cmake ..
make
./HelloPangolin

若安装成功,则会弹出以下窗口:

2.安装OpenCV

可以参考该链接
1.安装依赖项

# 解决:Unmet dependencies.Try'apt--fix-broken install'with no packages(or specify a solution)
sudo apt --fix-broken install
sudo apt-get update
sudo apt-get upgradesudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg.dev
sudo apt-get install libtiff5.dev libswscale-dev# 解决:add-apt-repository: command not found
sudo apt-get install software-properties-commonsudo apt-get update
sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
sudo apt-get update
sudo apt-get install libjasper1 libjasper-dev

2.安装 OpenCV3.4.5
OpenCV3.4.5源码 提取码:m27t (可在Github仓库右侧的Releases里找大于2.4.3版本的OpenCV)

# 解压并重命名为opencv
tar -xvf opencv-3.4.5.tar.gz && mv opencv-3.4.5 opencv
# 开始编译和安装
cd opencv
mkdir build && cd build 
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
# 4线程数量,根据电脑性能选择合适的数字
make -j4
sudo make install

3.验证安装是否完成

# 查询OpenCV版本
pkg-config --modversion opencv
# 查询OpenCV库
pkg-config --cflags opencv
# 查询头文件目录
pkg-config --libs   opencv

# 验证
cd opencv/samples/cpp/example_cmake
cmake .
make
./opencv_example

若安装成功,则会弹出以下窗口:

3.安装Eigen

1.安装 Eigen3.3.7
建议源码安装可以下载任意大于3.1.0.版本对应的文件。

# 解压并重命名为eigen
tar -xvf eigen-3.3.7.tar.gz && mv eigen-3.3.7 eigen
# 开始编译和安装
cd eigen
mkdir build && cd build
cmake ..
make
sudo make install# 在很多程序中include时经常使用#include <Eigen/Dense>而不是使用#include <eigen3/Eigen/Dense>
# 因此安装后需要将头文件从 /usr/local/include/eigen3/ 复制到 /usr/local/include
# 后续小节会有C++测试代码说明
sudo cp -r /usr/local/include/eigen3/Eigen /usr/local/include

2.测试eigen库安装完成
在home目录下新建一个test.cp 文件用以测试。

# 建立 test 测试文件
touch test_eigen.cpp
# 用gedit打开此测试文件,添加C++代码用于测试
gedit test_eigen.cpp
# 编译后生成一个test_eigen的可执行文件
g++ test_eigen.cpp -o test_eigen
# 在test_eigen可执行文件目录下执行以下命令,证明eigen库安装完成
./test_eigen

在test_eigen.cpp文件中添加的C++测试代码。

#include <iostream>
//需要将头文件从 /usr/local/include/eigen3/ 复制到 /usr/local/include
#include <Eigen/Dense>
//using Eigen::MatrixXd;
using namespace Eigen;
using namespace Eigen::internal;
using namespace Eigen::Architecture;
using namespace std;
int main()
{cout<<"*******************1D-object****************"<<endl;Vector4d v1;v1<< 1,2,3,4;cout<<"v1=\n"<<v1<<endl;VectorXd v2(3);v2<<1,2,3;cout<<"v2=\n"<<v2<<endl;Array4i v3;v3<<1,2,3,4;cout<<"v3=\n"<<v3<<endl;ArrayXf v4(3);v4<<1,2,3;cout<<"v4=\n"<<v4<<endl;
}

4.安装Pytorch(c++)

1.选择 Pytorch的版本:进入Pytorch的githup官网地址,按照下图步骤查询所需安装的pytorch版本。

博主试过1.12.0高版本的在以后执行GCNv2_SLAM出现错误,无解降低了pytorch版本。

2.Pytorch源码编译Libtorch

# 博主选择安装1.4.0版本
git clone --recursive -b v1.4.0 https://github.com/pytorch/pytorch
cd pytorch && mkdir build && cd build
# 构建 LibTorch 库, 建议python3而不是原始命令的python执行
# 因为2版本的python可能会报错
python3 ../tools/build_libtorch.py

编译成功

3.编译Libtorch过程中可能出现的错误

  • 假如git下载中途断掉,解决方案:
    # 进入目录pytorch
    cd pytorch
    # 用于初始化和更新子模块。
    git submodule update --init --recursive
    
  • 正在使用的Python版本(2.x版本)不支持。

    解决方案:使用更高的python版本。
    python3 ../tools/build_libtorch.py
    
  • 找不到名为 setuptools 的模块。

    解决方案:安装 setuptools 模块。
    # 在 Ubuntu 上安装 Python 3 版本的包管理器 pip
    sudo apt install python3-pip
    # 安装 setuptools 模块
    pip3 install setuptools
    
  • 没有安装符合要求的CMake版本。

    解决方案:更新CMake(参考教程)。
  • 找不到名为 typing_extensions yaml dataclasses 等模块。

    解决方案:安装 typing_extensions yaml dataclasses 等模块。
    pip3 install typing_extensions
    pip3 install pyyaml 
    pip3 install dataclasses
    # 需要删除build重新进行编译
    cd .. && sudo rm -rf build && mkdir build && cd build
    # 构建 LibTorch 库
    python3 ../tools/build_libtorch.py
    
  • c++: internal compiler error: Killed (program cc1plus)编译器试图使用过多内存或系统资源时,导致操作系统终止了编译器进程。


  • 解决方案1 (低性能机器不建议) :使用临时交换分区来解决,docker的ubuntu18.04容器的解决参考。
    # 创建一个大小为 30GB 的交换文件 /swapfile ,根据需要调整 bs 和 count 参数来创建不同大小的交换文件
    sudo dd if=/dev/zero of=/swapfile bs=30M count=1024
    # 更改上交换文件 /swapfile 的权限
    sudo chmod 600 /swapfile
    # mkswap 命令将指定的文件 /swapfile 标记为交换分区,并设置相应的文件系统标识
    sudo mkswap /swapfile
    # swapon 命令将指定的文件 /swapfile 作为交换空间启用,并将其添加到系统的交换空间列表中
    sudo swapon /swapfile
    # 重新打开黑框,需要删除build重新进行编译
    sudo rm -rf build && mkdir build && cd build
    # 构建 LibTorch 库
    python3 ../tools/build_libtorch.py
    # swapoff 命令将指定的交换空间文件或设备从系统中移除,并停止使用它作为虚拟内存的一部分
    sudo swapoff /swapfile
    # 删除 /swapfile 交换分区
    sudo rm /swapfile
    
    解决方案2 (低性能机器强烈建议) :还有一个方法是减少线程数量,需要修改pytorch源码pytorch/tools/setup_helpers/cmake.py:
    # 修改线程数目max_jobs,博主指定了12个
    # max_jobs 必须是string类型
    max_jobs = '12'
    

二、安装以及运行GCNv2_SLAM

1.安装编译GCNv2_SLAM

# 通过git下载GCNv2_SLAM源码,需要科学上网
git clone https://github.com/jiexiong2016/GCNv2_SLAM.git
cd GCNv2_SLAM
# 赋予shell文件运行权限
chmod +x build.sh
# 需要科学上网
# 博主根据个人电脑性修改build.sh里的torch位置,即你下载pytorch的路径
./build.sh


编译CUP版本需要几个地方:

  • 修改GCNv2_SLAM/src/GCNextractor.cc中的相关代码:

    //第一处原代码:
    const char *net_fn = getenv("GCN_PATH");
    net_fn = (net_fn == nullptr) ? "gcn2.pt" : net_fn;
    module = torch::jit::load(net_fn);
    //修改为:
    torch::DeviceType device_type;
    device_type = torch::kCPU;
    torch::Device device(device_type);
    const char *net_fn = getenv("GCN_PATH");
    net_fn = (net_fn == nullptr) ? "gcn2.pt" : net_fn;
    module = torch::jit::load(net_fn,device);//第二处原代码:
    device_type = torch::kCUDA;
    //修改为:
    device_type = torch::kCPU;
    

  • 修改GCNv2_SLAM/GCN2下gcn2_320x240.pt、gcn2_640x480.pt和gcn2_tiny_320x240.pt中的内容:

    更改以gcn2_320x240.pt为例,使用zip解压:

    unzip gcn2_320x240.pt && sudo rm -rf gcn2_320x240.pt
    

    解压完成后进入到解压文件的code目录下打开gcn.py将cuda:0修改成cpu:

    修改完成后使用zip压缩:

    zip -r gcn2_320x240.pt gcn
    

编译成功:

常见的错误

  • 这个错误会被密密麻麻的错误信息覆盖导致找不到,建议首先排查,可以在一开始报错的时候就用Ctrl+V中断:

    (博主在此前pytorch1.12.0版本是出现的错误),现在是pytorch1.4.0


    解决措施:只需要在GCNv2_SLAM/CMakeLists.txt文件修改添加:

    set(CMAKE_CXX_STANDARD 14)
    set(CMAKE_CXX_STANDARD_REQUIRED ON)
    # 修改:set_property(TARGET rgbd_gcn PROPERTY CXX_STANDARD 11)
    set_property(TARGET rgbd_gcn PROPERTY CXX_STANDARD 14)
    


  • std::shared_ptr是pytorch1.0.1版本使用的变量类型,现在博主使用的是pytorch1.4.0版本:

    解决措施:修改/GCNv2_SLAM/include/GCNextractor.h中的相关代码:

    //原代码
    std::shared_ptr<torch::jit::script::Module> module;
    //更改为
    torch::jit::script::Module module;
    

  • module已经不是指针:
    解决措施:修改GCNv2_SLAM/src/GCNextractor.cc中的相关代码:

    //原代码
    auto output = module->forward(inputs).toTuple();
    //更改为
    auto output = module.forward(inputs).toTuple();
    

  • 因为pytorch1.3以前默认true,后续版本默认false,需要修改:

    解决措施:以gcn2_320x240.pt为例,进入解压进入code目录下打开gcn.py修改内容,具有修改步骤此前内容已经阐述不再复述:

    //原代码
    _32 = torch.squeeze(torch.grid_sampler(input, grid, 0, 0))
    //修改为
    _32 = torch.squeeze(torch.grid_sampler(input, grid, 0, 0, True))
    

2.单目模式运行演示案例

TUM 数据集
数据下载链接,下载如下数据集

在GCNv2_SLAM工程下新建datasets/TUM,将数据集下载到其中。

# 新建datasets/TUM数据集文件夹
mkdir  -p datasets/TUM 
# 下载数据集到datasets/TUM文件夹内
# 解压数据集
cd datasets/TUM && tar -xvf rgbd_dataset_freiburg1_desk.tgz

需额外下载associate.py添加到数据文件夹下,注意:只能在Python2 环境下运行。

# associate.py需要numoy包
sudo apt-get install python-pip
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy# 在数据文件夹里执行命令
python associate.py rgb.txt depth.txt > associate.txt

作用是使RGD和depth的数据做一个对齐,一 一对应。

执行以下命令显示效果

cd GCN2
GCN_PATH=gcn2_320x240.pt ./rgbd_gcn ../Vocabulary/GCNvoc.bin TUM3_small.yaml /root/GCNv2_SLAM/GCNv2_SLAM/datasets/TUM/rgbd_dataset_freiburg1_desk /root/GCNv2_SLAM//GCNv2_SLAM/datasets/TUM/rgbd_dataset_freiburg1_desk/associate.txt


总结

尽可能简单、详细的介绍GCNv2_SLAM(CPU)的安装流程以及解决了安装过程中可能存在的问题。后续会根据自己学到的知识结合个人理解讲解GCNv2_SLAM的原理和代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/745667.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux 安装gradle7.4.2环境

1.下载gradle7.4.2工程 百度网盘 请输入提取码百度网盘为您提供文件的网络备份、同步和分享服务。空间大、速度快、安全稳固&#xff0c;支持教育网加速&#xff0c;支持手机端。注册使用百度网盘即可享受免费存储空间https://pan.baidu.com/s/1hoNEFkBJPHAgs9ITAEh3Zg?pwdGJ…

DDos攻击如何被高防服务器有效防范?

德迅云安全-领先云安全服务与解决方案提供商 什么是DDos攻击&#xff1f; DDos攻击是一种网络攻击手段&#xff0c;旨在通过使目标系统的服务不可用或中断&#xff0c;导致无法正常使用网络服务。DDos攻击可以采取多种方式实施&#xff0c;包括洪水攻击、压力测试、UDP Flood…

WPF —— TabControl、StackPanel 控件详解

1 TabControl简介 表示包含多个项的控件&#xff0c;这些项共享屏幕上的同一空间。 TabControl有助于最大程度地减少屏幕空间使用量&#xff0c;同时允许应用程序公开大量数据。 TabControl包含共享同一屏幕空间的多个 TabItem 对象。一次只能看到 TabControl 中的一个 Ta…

java的23种设计模式02-创建型模式02-抽象工厂方法

一、抽象工厂方法 1-1、抽象工厂方法的定义 抽象工厂模式是一个比较复杂的创建型模式。 抽象工厂模式和工厂方法不太一样&#xff0c;它要解决的问题比较复杂&#xff0c;不但工厂是抽象的&#xff0c;产品是抽象的&#xff0c;而且&#xff1a;有多个产品需要创建&#xff…

玩转 Spring 状态机:更优雅的实现订单状态流转

说起 Spring 状态机&#xff0c;大家很容易联想到这个状态机和设计模式中状态模式的区别是啥呢&#xff1f;没错&#xff0c;Spring 状态机就是状态模式的一种实现&#xff0c;在介绍 Spring 状态机之前&#xff0c;让我们来看看设计模式中的状态模式。 1. 状态模式 状态模式…

pytorch之诗词生成3--utils

先上代码&#xff1a; import numpy as np import settingsdef generate_random_poetry(tokenizer, model, s):"""随机生成一首诗:param tokenizer: 分词器:param model: 用于生成古诗的模型:param s: 用于生成古诗的起始字符串&#xff0c;默认为空串:return: …

linux 安装/升级 svn

文章目录 下载最新版本安装包安装 下载最新版本安装包 wget https://dlcdn.apache.org/subversion/subversion-1.14.3.tar.gz tar -zxf subversion-1.14.3.tar.gz cd subversion-1.14.3 安装 ./configure 报错&#xff0c;提示缺少 apr-util 库&#xff0c;有的环境可能 apr 库…

人工智能|机器学习——CURE聚类算法(层次聚类)

1.CURE聚类概述 绝大多数聚类算法或者擅长处理球形和相似大小的聚类&#xff0e;或者在存在孤立点时变得比较脆弱。CURE采用了一种新颖的层次聚类算法&#xff0e;该算法选择基于质心和基于代表对象方法之间的中间策略。它不同于单个质心或对象来代表一个类&#xff0c;而是选择…

大话设计模式——6.工厂方法模式(Factory Method Pattern)

1.介绍 工厂方法模式也称工厂模式&#xff0c;是简单工厂模式的进一步抽象。定义一个用于创建对象的接口&#xff0c;使一个类的实例化延迟到其子类&#xff0c;让子类决定实例化哪个类。通过工厂父类定义负责创建产品的公共接口&#xff0c;通过子类确定所需要创建的类型。 属…

《ElementPlus 与 ElementUI 差异集合》el-input 多包裹一层 el-input__wrapper

差异 element-ui el-input 中&#xff0c;<div class"el-input"> 下一级就是 <input> 标签 &#xff1b;element-plus el-input中&#xff0c;<div class"el-input"> 和 <input> 标签之间多了一层 <div class"el-input__…

Nginx、LVS、HAProxy工作原理和负载均衡架构

当前大多数的互联网系统都使用了服务器集群技术&#xff0c;集群是将相同服务部署在多台服务器上构成一个集群整体对外提供服务&#xff0c;这些集群可以是 Web 应用服务器集群&#xff0c;也可以是数据库服务器集群&#xff0c;还可以是分布式缓存服务器集群等等。 在实际应用…

提升零售行业竞争力的信息抽取技术应用与实践

一、引言 在当今快速发展的零售行业中&#xff0c;沃尔玛、家乐福等大型连锁超市为消费者提供了丰富的日常食品和日用品。为了进一步提升客户体验和优化库存管理&#xff0c;这些零售巨头纷纷开始探索和应用先进的信息抽取技术。 本文将深入探讨一个成功的信息抽取项目&#…

使用HttpRequest工具类调用第三方URL传入普通以及文件参数并转换MultipartFile成File

使用HttpRequest工具类调用第三方URL传入普通以及文件参数 一、依赖及配置二、代码1、模拟第三方服务2、调用服务3、效果实现 一、依赖及配置 <!--工具依赖--><dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId&g…

嵌入式单片机学习思路感想分享

今天看到了一个提问,原话如下: 曾经干了8年单片机工程师,对工程师从入门,到入行,再到普通,再到高级,整个路径还算清晰,比如什么阶段,会碰到什么瓶颈,怎么突破,我都经历过。 这个同学,有个典型的问题,就是学得太多且杂了,估计稍微复杂点的项目,做不出来。 现在…

Spring Boot 中@Scheduled是单线程还是多线程?

在开发Spring Boot应用程序时&#xff0c;定时任务是一项常见的需求。Spring Boot提供了Scheduled注解&#xff0c;可用于将方法标记为定时任务&#xff0c;并在预定的时间间隔内执行。那么Scheduled注解的执行方式是单线程执行&#xff0c;还是多线程执行&#xff1f;Schedule…

docker小白第十二天

docker小白第十二天 docker network简介 docker不启动时默认的网络情况。 # 停止docker服务 systemctl stop docker.socket systemctl stop docker # 查看docker镜像 docker images输入查看docker镜像命令后&#xff0c;显示未连接到docker服务器 docker启动时网络情况 sy…

使用BBDown下载bilibili视频的方法

一款命令行式哔哩哔哩下载器. Bilibili Downloader. 下载地址 https://github.com/nilaoda/BBDown 功能 番剧下载(Web|TV|App) 课程下载(Web) 普通内容下载(Web|TV|App) 合集/列表/收藏夹/个人空间解析 多分P自动下载 选择指定分P进行下载 选择指定清晰度进行下载 下载外挂字幕…

html--bug

文章目录 html html <!DOCTYPE html> <html><head><meta charset"UTF-8"><title>老师</title><style>body {background-color: #008000;margin: 0px;cursor: none;overflow: hidden;}</style></head><bod…

88. 合并两个有序数组 (Swift版本)

题目 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2&#xff0c;另有两个整数 m 和 n &#xff0c;分别表示 nums1 和 nums2 中的元素数目。 请你 合并 nums2 到 nums1 中&#xff0c;使合并后的数组同样按 非递减顺序 排列。 注意&#xff1a;最终&#xff0c;合并…

深度解析Java JDK 1.8中Stream流的源码实现:带你探寻数据流的奥秘

文章目录 一、 Stream流概述1.1 什么是Stream流&#xff0c;以及它的主要特点和优势1.2 Stream流的基本操作&#xff1a;过滤、映射、排序等 二、 Stream流源码解析2.1 接口和基本概念2.2 创建流2.3 源码分析2.3.1 流的起始2.3.2 流的初始2.3.3 认识BaseStream2.3.4 Stream接口…