人工智能|机器学习——BIRCH聚类算法(层次聚类)

这里再来看看另外一种常见的聚类算法BIRCH。BIRCH算法比较适合于数据量大,类别数K也比较多的情况。它运行速度很快,只需要单遍扫描数据集就能进行聚类

1.什么是流形学习

BIRCH的全称是利用层次方法的平衡迭代规约和聚类(Balanced Iterative Reducing and Clustering Using Hierarchies)其实只要明白它是用层次方法来聚类和规约数据就可以了。BIRCH只需要单遍扫描数据集就能进行聚类,那它是怎么做到的呢?

BIRCH算法利用了一个树结构来帮助实现快速的聚类,这个数结构类似于平衡B+树,一般将它称之为聚类特征树(Clustering Feature Tree,简称CF Tree)。这颗树的每一个节点是由若干个聚类特征(Clustering Feature,简称CF)组成。从下图可以看看聚类特征树是什么样子的:每个节点包括叶子节点都有若干个CF,而内部节点的CF有指向孩子节点的指针,所有的叶子节点用一个双向链表链接起来。

2.聚类特征CF与聚类特征树CF Tree

在聚类特征树中,一个聚类特征CF是这样定义的:每一个CF是一个三元组,可以用(N,LS,SS)表示,其中N代表了这个CF中拥有的样本点的数量;LS代表了这个CF中拥有的样本点各特征维度的和向量,SS代表了这个CF中拥有的样本点各特征维度的平方和。

举个例子如下图,在CF Tree中的某一个节点的某一个CF中,有下面5个样本(3,4), (2,6), (4,5), (4,7), (3,8)。则它对应的N=5, LS=(3+2+4+4+3,4+6+5+7+8)=(16,30), SS =(3*3+2*2+4*4+4*4+3*3+4*4+6*6+5*5+7*7+8*8)=244

CF有一个很好的性质,就是满足线性关系,即CF1+CF2=(N1+N2,LS1+LS2,SS1+SS2)。如果把这个性质放在CF Tree上,对于每个父节点中的CF节点,它的(N,LS,SS)三元组的值等于这个CF节点所指向的所有子节点的三元组之和。如下图所示:

从上图中可以看出,根节点CF1的三元组的值,可以从它指向的6个子节点(CF7 - CF12)的值相加得到。这在更新CF Tree时可以很高效。

对于CF Tree,一般有几个重要参数,第一个参数是每个内部节点的最大CF数B第二个参数是每个叶子节点的最大CF数L第三个参数是针对叶子节点中某个CF中的样本点来说的,它是叶节点每个CF的最大样本半径阈值T,也就是说,在这个CF中的所有样本点一定要在半径小于T的一个超球体内。对于上图中的CF Tree,限定了B=7, L=5, 也就是说内部节点最多有7个CF,而叶子节点最多有5个CF。

3.聚类特征树CF Tree的生成

下面看看怎么生成CF Tree。先定义好CF Tree的参数: 即内部节点的最大CF数B, 叶子节点的最大CF数L, 叶节点每个CF的最大样本半径阈值T。

开始时CF Tree是空的,没有任何样本,我们从训练集读入第一个样本点,将它放入一个新的CF三元组A,这个三元组的N=1,将这个新的CF放入根节点,此时的CF Tree如下图:

现在继续读入第二个样本点,发现这个样本点和第一个样本点A在半径为T的超球体范围内,即他们属于一个CF,将第二个点也加入CF A,此时需要更新A的三元组的值。此时A的三元组中N=2。此时的CF Tree如下图:

此时读取第三个节点,结果发现这个节点不能融入刚才前面的节点形成的超球体内,也就是说,需要一个新的CF三元组B来容纳这个新的值。此时根节点有两个CF三元组A和B,此时的CF Tree如下图:

当来到第四个样本点时,发现和B在半径小于T的超球体,这样更新后的CF Tree如下图:

那个什么时候CF Tree的节点需要分裂呢?假设现在的CF Tree 如下图, 叶子节点LN1有三个CF, LN2和LN3各有两个CF。叶子节点的最大CF数L=3。此时一个新的样本点来了,发现它离LN1节点最近,因此开始判断它是否在sc1,sc2,sc3这3个CF对应的超球体之内,但是很不幸,它不在,因此它需要建立一个新的CF,即sc8来容纳它。问题是我们的L=3,也就是说LN1的CF个数已经达到最大值了,不能再创建新的CF了,怎么办?此时就要将LN1叶子节点一分为二了。

将LN1里所有CF元组中,找到两个最远的CF做这两个新叶子节点的种子CF,然后将LN1节点里所有CF sc1, sc2, sc3,以及新样本点的新元组sc8划分到两个新的叶子节点上。将LN1节点划分后的CF Tree如下图:

如果内部节点的最大CF数B=3,则此时叶子节点一分为二会导致根节点的最大CF数超了,也就是说,根节点现在也要分裂,分裂的方法和叶子节点分裂一样,分裂后的CF Tree如下图:

有了上面这一系列的图,相信大家对于CF Tree的插入就没有什么问题了,总结下CF Tree的插入:

1. 从根节点向下寻找和新样本距离最近的叶子节点和叶子节点里最近的CF节点

2. 如果新样本加入后,这个CF节点对应的超球体半径仍然满足小于阈值T,则更新路径上所有的CF三元组,插入结束。否则转入3.

3. 如果当前叶子节点的CF节点个数小于阈值L,则创建一个新的CF节点,放入新样本,将新的CF节点放入这个叶子节点,更新路径上所有的CF三元组,插入结束。否则转入4。

4.将当前叶子节点划分为两个新叶子节点,选择旧叶子节点中所有CF元组里超球体距离最远的两个CF元组,分布作为两个新叶子节点的第一个CF节点。将其他元组和新样本元组按照距离远近原则放入对应的叶子节点。依次向上检查父节点是否也要分裂,如果需要按和叶子节点分裂方式相同。

4.BIRCH算法

将所有的训练集样本建立了CF Tree,一个基本的BIRCH算法就完成了,对应的输出就是若干个CF节点,每个节点里的样本点就是一个聚类的簇。也就是说BIRCH算法的主要过程,就是建立CF Tree的过程。

当然,真实的BIRCH算法除了建立CF Tree来聚类,其实还有一些可选的算法步骤的,现在我们就来看看 BIRCH算法的流程。

  • 1) 将所有的样本依次读入,在内存中建立一颗CF Tree, 建立的方法参考上一节。
  • 2)(可选)将第一步建立的CF Tree进行筛选,去除一些异常CF节点,这些节点一般里面的样本点很少。对于一些超球体距离非常近的元组进行合并
  • 3)(可选)利用其它的一些聚类算法比如K-Means对所有的CF元组进行聚类,得到一颗比较好的CF Tree.这一步的主要目的是消除由于样本读入顺序导致的不合理的树结构,以及一些由于节点CF个数限制导致的树结构分裂。
  • 4)(可选)利用第三步生成的CF Tree的所有CF节点的质心,作为初始质心点,对所有的样本点按距离远近进行聚类。这样进一步减少了由于CF Tree的一些限制导致的聚类不合理的情况。

从上面可以看出,BIRCH算法的关键就是步骤1,也就是CF Tree的生成,其他步骤都是为了优化最后的聚类结果。

5.BIRCH算法总结

BIRCH算法可以不用输入类别数K值,这与K-Means,Mini Batch K-Means不同。如果不输入K值,则最后的CF元组的组数即为最终的K,否则会按照输入的K值对CF元组按距离大小进行合并。

一般来说,BIRCH算法适用于样本量较大的情况,这点和Mini Batch K-Means类似,但是BIRCH适用于类别数比较大的情况,而Mini Batch K-Means一般用于类别数适中或者较少的时候。BIRCH除了聚类还可以额外做一些异常点检测和数据初步按类别规约的预处理。

优点

  • 1) 节约内存,所有的样本都在磁盘上,CF Tree仅仅存了CF节点和对应的指针。
  • 2) 聚类速度快,只需要一遍扫描训练集就可以建立CF Tree,CF Tree的增删改都很快。
  • 3) 可以识别噪音点,还可以对数据集进行初步分类的预处理

缺点

  • 1) 由于CF Tree对每个节点的CF个数有限制,导致聚类的结果可能和真实的类别分布不同.
  • 2) 对高维特征的数据聚类效果不好。此时可以选择Mini Batch K-Means
  • 3) 如果数据集的分布簇不是类似于超球体,或者说不是凸的,则聚类效果不好。

6.Python代码

6.1 函数接口

Birch算法函数

sklearn.cluster.Birch

主要参数

  • n_clusters :聚类的目标个数;(可选)
  • threshold :扫描半径(个人理解,官方说法比较绕口),设置小了分类就多;
  • branches_factor:每个节点中CF子集群的最大数量,默认为50;
  • labels_ :每个数据点的分类

6.2 实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn.cluster import Birch# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共4个簇,簇中心在[-1,-1], [0,0],[1,1], [2,2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]], cluster_std=[0.4, 0.3, 0.4, 0.3], random_state =9)##设置birch函数
birch = Birch(n_clusters = None)
##训练数据
y_pred = birch.fit_predict(X)
##绘图
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/743656.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Prompt Engineering(提示工程)

Prompt 工程简介 在近年来,大模型(Large Model)如GPT、BERT等在自然语言处理领域取得了巨大的成功。这些模型通过海量数据的训练,具备了强大的语言理解和生成能力。然而,要想充分发挥这些大模型的潜力,仅仅…

【计算机视觉】目标跟踪| 光流算法详细介绍|附代码

0、前言 在上篇文章中https://blog.csdn.net/Yaoyao2024/article/details/136625461?spm1001.2014.3001.5501,我们对目标跟踪任务和目标跟踪算法有了大致的了解。今天我们就来详细介绍一下其中的生成式算法的一种:光流法。 在介绍光流法之前&#xff…

SinoDB V16.8 版本新特性

1、Oracle兼容 兼容 with as 语法 兼容 insert all/first 语法 兼容 () 形式的左外连接和右外连接语法 兼容 ROLLUP/CUBE/GROUPING SETS 语法 兼容 create or replace view/trigger/procedure/function/index 语法 兼容 rename procedure/function 语法 2、新增功能 条…

IMX8MM -- Yocto构建遇见的错误及解决方法:

IMX8MM Yocto构建遇见的错误及解决方法: 1 bison-3.0.4 error2 Opencv BB_NO_NETWORK Error :3 Yocto构建时出现U-boot 问题4 Yocto构建时出现Linux kernel编译问题5 wayland-native6 cross-localedef-native7 wayland-protocols8 mesa 硬件:…

Linux网络配置修改hosts映射文件关闭防火墙

Linux网络配置&系统管理 一、物理机、VMware软件、虚拟机之间的网络关系1.1 总体框架图1.2 为什么物理机、VM软件、客户机之间能够通信?1.3 查看客户机的IP地址ifconfig1.4 小节1.5 修改静态IP地址1.6 测试能不能ping通 二、修改主机名以及hosts映射文件2.1 修改主机名2.1…

什么是事件冒泡?Littlevgl中的事件冒泡是怎么样的?

什么是事件冒泡?Littlevgl中的事件冒泡是怎么样的? 事件冒泡(Event Bubbling)是指当一个元素上的事件被触发时,该事件会从最底层的元素开始逐级向上传播,直到最顶层的元素(通常是文档对象)被触发。 ​ 例如我们点击一个按钮时,…

前后端分离项目环境搭建

1. 使用到的技术和工具 springboot vue项目的搭建 工具 idea,mavennodejs 2. 后端框架搭建 利用maven创建springboot项目 3. 前端项目搭建 1. 安装相关工具 nodejs: 一个开源、跨平台的 JavaScript 运行时环境,可以理解成java当中需要…

fly-gesture-unlock 手势解锁库

最近要实现前端九宫格手势解锁功能,到 github 和 gitee 上没有找到质量比较好的库,自己对这个功能也是蛮感兴趣的,所以做了这个开源库,用于实现手势解锁功能,可以帮助大家快速完成业务逻辑,提供了完整的 DE…

Prompt提示工程上手指南:基础原理及实践(二)-Prompt主流策略

前言 上篇文章将Prompt提示工程大体概念和具体工作流程阐述清楚了,我们知道Prompt工程是指人们向生成性人工智能(AI)服务输入提示以生成文本或图像的过程中,对这些提示进行精炼的过程。生成人工智能是一个根据人类和机器产生的数…

python基于flask考研学习交流系统30vy7附源码django

考研在线学习与交流平台根据实际情况分为前后台两部分,前台部分主要是让用户使用的,包括用户的注册登录,首页,课程信息,在线讨论,系统公告,后台管理,个人中心等功能;后台…

Mysql锁与MVCC

文章目录 Mysql锁的类型锁使用MVCC快照读和当前读读视图【Read View】串行化的解决 exlpain字段解析ACID的原理日志引擎整合SpringBoot博客记录 Mysql锁的类型 MySQL中有哪些锁: 乐观锁(Optimistic Locking):假设并发操作时不会发…

Database Connectivity using Python使用 Python 进行数据库连接

Introduction • The Python programming language has powerful features for database programming • Python supports various databases like MySQL, Oracle, Sybase, PostgreSQL, etc • Python also supports Data Definition Language (DDL), Data Manipulation Langua…

ARMV8-aarch64的虚拟内存(mmutlbcache)介绍-概念扫盲

🔥博客主页: 小羊失眠啦. 🎥系列专栏:《C语言》 《数据结构》 《C》 《Linux》 《Cpolar》 ❤️感谢大家点赞👍收藏⭐评论✍️ 思考: 1、cache的entry里都是有什么? 2、TLB的entry里都是有什么? 3、MMU操作…

unity3d Animal Controller的Animal组件中Speeds,States和modes基础部分理解

Speeds 速度集是修改你可以做的原始动画,增加或减少运动,旋转,或动画速度。它们与 州 所以,当动物在运动状态下,在飞行或游泳时,你可以有不同的速度 如果你的性格动画是 (已到位), 你一定要调整速度 位置 和 旋转 每一种的价值观 速度装置 …否则,它们不会移动或旋转。 每个速…

计算机行业在数字经济时代的角色与数字化转型之路

目录 前言1 数字经济时代下的计算机行业角色与定位1.1 数字经济支撑者1.2 创新引领者1.3 产业融合者 2 数字化转型对计算机行业的影响与挑战2.1 技术更新换代的压力2.2 人才培养与流动的问题2.3 数据隐私与安全的挑战 3 数字化转型如何提升行业竞争力3.1 提高生产效率与优化产品…

Prometheus 监控告警配置

文章目录 一、告警通知1.邮件通知2.钉钉通知2.1.获取钉钉机器人webhook2.2.prometheus-webhook-dingtalk2.3.配置信息2.4.自定义模板 3.自定义 二、告警规则1.Prometheus2.Linux3.Docker4.Nginx5.Redis6.PostgreSQL7.MySQL8.RabbitMQ9.JVM10.Elasticsearch 开源中间件 # Prome…

OpenCV的常用数据类型

OpenCV涉及的常用数据类型除包含C的基本数据类型,如:char、uchar,int、unsigned int,short 、long、float、double等数据类型外, 还包含Vec,Point、Scalar、Size、Rect、RotatedRect、Mat等类。C中的基本数据类型不需再做说明下面重点介绍一下…

揭秘WMM:wifi中的QOS

更多内容在 WiFi WMM(无线多媒体)是一种用于无线局域网(WLAN)的QoS(服务质量)标准。WMM旨在提供更好的网络性能,特别是在传输多媒体内容(如音频和视频)时。它通过对不同类…

42.坑王驾到第八期:uniCloud报错

uniCloud 报错 今天调用云函数来调试小程序的时候突然暴了一个奇葩错误,require(…).main is not a function。翻官方文档后发现,原来是这样:**如果你写的是云对象,入口文件应为 index.obj.js,如果你写的是云函数入口…

python学习2:日志记录的用法

一些日志记录的简单记录: 用basicConfig可以进行配置 注意日志的等级: 上述代码得到的日志如下(最基础的日志): 关于记录下来的日志格式可以有很多内容:如等级、发生的时间、发生的位置、发生的进程、…