游戏数据处理

游戏行业关键数据指标

  • ~

    • 总激活码发放量、总激活量、总登录账号数

    • 激活率、激活登录率

      • 激活率 = 激活量 / 安装量

      • 激活率 = 激活量 / 激活码发放量

      • 激活且登录率 = 激活且登录量 / 激活码激活量

 

激活且登录率应用场景

  • 激活且登录率是非常常用的转化率指标之一,广泛用于端游、手游。

  • 大多数游戏公司在游戏封测期间为了限制用户数量,都会进行限量测试,对用户数量进行把控的主要方式就是发放激活码,激活码的激活且登录率反映实际进入游戏的用户数量。

  • 当激活且登录率较低时,想到的是玩家在登录环节是否遇到了困难,主要排查客户端问题,以及是否有服务器维护,如果游戏登录环节没有异常,则该指标能说明玩家对该游戏的兴趣程度。

  • ACU(Average concurrent users)平均同时在线玩家人数

  • PCU(Peak concurrent users)最高同时在线玩家人数

  • 游戏从封测开始,多数公司都会投入固定的内、外部宣传资源作为游戏的初期市场推广,以收集游戏的封测数据,这其中主要就是留存率

  • 无论是端游还是手游,都非常重视这一指标,留存率成为衡量产品质量的重要指标之一,用以判定游戏的基本品质,为后续的市场资源调配提供参考。

  • 游戏封测主要有两种形式,为发放激活码测试和不发放激活码测试,由于发放激活码测试针对的用户群体更偏向核心用户,一般来说,其留存率高于非激活码测试。

游戏行为数据

 职业分布数据:狙击手,突击手

  1. 玩家使用情况:统计并分析狙击手和突击手这两个职业被选择的频率,了解在玩家群体中的普及度。
  2. 胜率贡献:观察每个职业在比赛中的表现,比如胜利贡献、击杀数等指标,以评估其对团队胜率的影响。
  3. 关键行为分析:针对狙击手和突击手的关键行为(如狙击成功率、突破效率)进行数据收集,帮助理解这些行为如何影响游戏结果。
  4. 地图分布:分析不同职业在各个游戏地图上的活动热点,例如在哪些位置进行开枪、购买武器等行为。
  5. 道具和武器使用:研究不同职业偏好的枪械类型及其使用效果,如突破手倾向于使用的AK47或Tec9。
  6. 玩家技能评级:根据个人rating和团队配合情况来评价狙击手和突击手的技能水平及对团队的贡献。

用户付费指标

游戏行为数据的用户付费指标是评估玩家在游戏中消费行为的关键数据点。这些指标可以帮助游戏开发者和运营商了解玩家的付费习惯,从而优化游戏设计、提高收入和改善玩家体验。以下是一些常见的用户付费指标:

  1. 付费转化率(Conversion Rate):付费用户与活跃用户的比率,用于衡量游戏中有多少玩家愿意进行付费。

  2. 每用户平均收入(ARPU - Average Revenue Per User):在一定时期内,游戏从每位用户那里获得的平均收入。

  3. 每付费用户平均收入(ARPPU - Average Revenue Per Paying User):在一定时期内,游戏从每位付费用户那里获得的平均收入。

  4. 用户生命周期价值(LTV - Lifetime Value):预测一个用户在整个游戏生命周期内可能产生的总收入。

  5. 首次付费时间(Day 1 Conversion):用户在首次玩游戏后24小时内完成首次付费的比例。

  6. 累计付费用户(Cumulative Paying Users):在特定时间段内,至少进行过一次付费的用户总数。

  7. 付费深度(Pay Depth):用户在游戏内的付费深度,通常通过分析用户的付费金额分布来衡量。

  8. 付费留存率(Paying User Retention):在特定时间段内,继续进行付费的用户比例。

  9. 重复付费率(Repeat Payment Rate):在特定时间段内,进行了多次付费的用户比例。

  10. 付费用户获取成本(CAC - Customer Acquisition Cost):获取每位付费用户所需的平均成本。

  11. 付费用户流失率(Churn Rate):在特定时间段内,停止付费的用户比例。

  12. 购买行为分布(Purchase Behavior Distribution):用户购买不同类型或价格点商品的频率和数量分布。

  13. 促销响应率(Promotional Response Rate):用户对特定促销活动或优惠的反应和参与度。

  14. 礼品卡/虚拟货币销售:通过礼品卡或虚拟货币产生的销售额。

  15. 跨销售和增销指标(Cross-Sell and Upsell Metrics):衡量用户购买额外商品或服务的情况。

ARPPU=付费金额/付费人数,ARPU低于3元则说明表现较差。

ARPU=付费金额/活跃人数


游戏运营中的转化率漏斗模型是一种分析用户行为和优化用户体验的工具,它包括拉新、促活、留存和付费转化这四个主要环节。以下是对这些环节的详细解释:

  1. 拉新:这是转化率漏斗的第一步,目的是吸引新用户进入游戏。这通常通过广告营销、渠道合作、社交媒体推广等方式实现。有效的拉新策略可以提高游戏的知名度和用户基数。
  2. 促活:一旦用户开始游戏,运营的目标是让用户更频繁、更愉快地玩游戏。这可能涉及到游戏内容的更新、社区活动的举办或者个性化推送等手段,以提高用户的活跃度。
  3. 留存:留存率是衡量用户是否继续使用游戏的指标,包括日留存率、周留存率、月留存率等。高留存率意味着用户对游戏有较高的忠诚度和满意度。留存策略可能包括优化新手引导、提供持续的游戏动力和奖励机制等。
  4. 付费转化:最终目标是将用户转化为付费玩家。这涉及到设计吸引人的内购项目、提供价值感强的付费内容、以及优化支付流程等。付费转化率的高低直接影响游戏的收入模式。

 

转化率漏斗模型帮助游戏运营者了解在每个环节中用户的转化情况,从而找出潜在的问题点和改进机会。通过分析漏斗数据,运营团队可以制定相应的策略来提高整体的用户转化率,进而提升游戏的市场表现和盈利能力。

import numpy as np
import pandas as pd
from pylab import matplotlib as mpl
from matplotlib import pyplot as plt
import seaborn as sns
from datetime import datetime
mpl.rcParams['font.sans-serif'] = ['Simhei']
mpl.rcParams['axes.unicode_minus'] = False
df = pd.read_csv('train.csv')

 用户分析

reg_user=df1[['user_id','register_time']]
reg_user.head()reg_user.register_time=pd.to_datetime(reg_user.register_time,format="%Y/%m/%d")
reg_user.register_time=reg_user.register_time.apply(lambda x: datetime.strftime(x,"%Y-%m-%d"))
#计算每天注册人数
reg_user = reg_user.groupby(['register_time']).user_id.count()fig = plt.figure(figsize=(14, 10))
plt.plot(reg_user)plt.xticks(rotation=90)
plt.title('用户注册图')
plt.show()

付费分析

#活跃用户
actuser = df1[df1['online_minutes']>=30]
#付费用户
payuser = df1[df1['payprice']>0]
#付费率
payrate = pay_user['user_id'].count() / act_user['user_id'].count()
print('付费率为%.1f' %(payrate))

 ARRPPU

#计算ARPPU
ARPPU = pay_user['payprice'].sum()/ payuser['user_id'].count()
print('ARPPU为%.1f' %(ARPPU))
#ARPPU为26.5
x=user_pay['等级']
y=user_pay['人均付费总额']
fig = plt.figure(figsize=(12,8))
plt.plot(x,y)
plt.xticks(x,range(0,len(x),1))
plt.grid(True)
plt.title('等级和人均付费总额的关系')
plt.show()

 氪金用户与一搬用户

wood_avg = [sup_user['wood_reduce_value'].mean(), nor_user['wood_reduce_value'].mean()]
stone_avg = [sup_user['stone_reduce_value'].mean(), nor_user['stone_reduce_value'].mean()]
ivory_avg = [sup_user['ivory_reduce_value'].mean(), nor_user['ivory_reduce_value'].mean()]
meat_avg = [sup_user['meat_reduce_value'].mean(), nor_user['meat_reduce_value'].mean()]
magic_avg = [sup_user['magic_reduce_value'].mean(), nor_user['magic_reduce_value'].mean()]
data = {'高氪玩家':[wood_avg[0], stone_avg[0], ivory_avg[0], meat_avg[0], magic_avg[0]], '低氪玩家':[wood_avg[1], stone_avg[1], ivory_avg[1], meat_avg[1], magic_avg[1]]}
resource = pd.DataFrame(data, index=['木头', '石头', '象牙', '肉', '魔法'])resource.plot(kind = 'bar', stacked=True, figsize=(14, 10))plt.title('玩家资源使用量')

总结游戏数据分析的意义体现在以下几个方面:

  1. 优化产品:通过分析玩家行为数据,开发者可以了解玩家在游戏中的行为模式,识别和解决游戏中可能存在的问题,从而对游戏进行改进和优化。
  2. 提升运营效率:数据分析能够帮助游戏运营团队更有效地制定策略,例如通过对高价值用户群体的画像分析,可以更好地满足他们的需求,提高玩家的忠诚度和游戏的盈利能力。
  3. 减少成本增加收入:通过数据驱动业务,可以产生具体的落地解决方案,提高产品运营效率,提升产品的健康度,有助于企业减少不必要的成本开支,增加收入。
  4. 业务深度结合:数据分析需要与游戏的业务深度结合,针对不同类型的游戏细化出专门的分析方法,这样才能更好地发挥数据分析的价值,比如与游戏的机制、玩法、活动等深度融合。
  5. 渠道和流量分析:数据分析还可以帮助理解不同渠道的表现和效果,以及玩家的流量来源,这对于渠道运营和市场营销策略的调整至关重要。
  6. 经验模型构建:通过历史数据的积累和分析,可以构建经验模型,预测未来的发展趋势,为决策提供科学依据。
  7. 监控和报告:定期的数据分析报告可以帮助团队监控游戏的健康状况,及时发现并解决问题,确保游戏长期稳定运行。
  8. 市场趋势洞察:数据分析还可以帮助捕捉市场趋势,为新游戏的开发提供方向指导,抓住市场机会。
  9. 用户体验改善:通过对用户行为的深入分析,可以更好地理解用户需求,从而提供更加个性化的游戏体验,增强用户满意度。
  10. 风险管理:数据分析有助于识别潜在的风险点,如欺诈行为、系统漏洞等,及时采取措施防范风险。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/743325.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ypay源支付6.9无授权聚合免签系统可运营源码

YPay是一款专为个人站长设计的聚合免签系统,YPay基于高性能的ThinkPHP 6.1.2 Layui PearAdmin架构,提供了实时监控和管理的功能,让您随时随地掌握系统运营情况。 说明 Ypay源支付6.9无授权聚合免签系统可运营源码 已搭建测试无加密版本…

HTML5:七天学会基础动画网页13

看完前面很多人可能还不是很明白0%-100%那到底是怎么回事,到底该怎么用,这里我们做一个普遍的练习——心跳动画 想让心❤跳起来,我们先分析一波,这个心怎么写,我们先写一个正方形,再令一个圆形前移: 再来一…

蓝桥杯历年真题 省赛 Java b组 2016年第七届

一、题目 分小组 9名运动员参加比赛,需要分3组进行预赛。 有哪些分组的方案呢? 我们标记运动员为 A,B,C,... I 下面的程序列出了所有的分组方法。 该程序的正常输出为: ABC DEF GHI ABC DEG FHI ABC DEH FGI ABC DEI FGH ABC DFG EHI ABC…

Linux中YUM仓库的配置

Linux软件包的管理 YUM仓库是什么YUM的常用命令修改YUM源其实CentOS7已经对YUM做了优化 YUM仓库是什么 之前传统RPM的管理方式 可以简单理解为写Java的时候不用Maven管理 jar包都要自己手动去导入 去下载 但是配置好YUM仓库 就放佛在用Maven管理Java项目 基于RPM包管理 能够从…

Python导入类说一说

要在Python中导入一个类,需要使用import关键字。 详细去看下面的代码 1、多例类 class Restaurant:餐馆类def __init__(self,restaurant_name,cuisine_type):#类的属性self.restaurant_name restaurant_nameself.cuisine_type cuisine_type# self.stregth_leve…

2024软件测试应该学什么?“我“怎么从功能转入自动化测试?

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、软件测试应该学…

TypeScript编译选项

编译单个文件:终端 tsc 文件名 自动编译单个文件:终端 tsc 文件名 -w 编译整个项目:tsc 前提是得有ts的配置文件tsconfig.json 自动编译整个项目:tsc --w tsconfig.json默认文件内容: tsconfig.json是ts编译器的配…

代码随想录算法训练营第16天

104.二叉树的最大深度 (优先掌握递归) 思路: 注意: 传入参数:depth, root 终止条件:if(root nullptr) return 0; 单层递归逻辑: 左右中int left getmax(depth1, root->left);int right …

代码随想录算法训练营Day45 ||leetCode 70. 爬楼梯 (进阶)|| 322. 零钱兑换 || 279.完全平方数

70. 爬楼梯 &#xff08;进阶&#xff09; 本质上和leetcode377一样 #include <iostream> #include <vector> using namespace std; int main() {int n, m;while (cin >> n >> m) {vector<int> dp(n 1, 0);dp[0] 1;for (int i 1; i < n; i…

【MySQL 系列】MySQL 索引篇

在 MySQL 中&#xff0c;索引是一种帮助存储引擎快速获取数据的数据结构&#xff0c;形象的说就是索引是数据的目录。它一般是以包含索引键值和一个指向索引键值对应数据记录物理地址的指针的节点的集合的清单的形式存在。通过使用索引&#xff0c; MySQL 可以在不需要扫描整个…

『scrapy爬虫』03. 爬取多个页面(详细注释步骤)

目录 1. 分析网页试着拿到多个页面的url2. 抓取250个电影3. start_requests的使用4. 代码规范导库的优化关于重写最终修改后的代码 总结 欢迎关注 『scrapy爬虫』 专栏&#xff0c;持续更新中 欢迎关注 『scrapy爬虫』 专栏&#xff0c;持续更新中 1. 分析网页试着拿到多个页面…

关于tcp协议

目录 前言&#xff1a; 一、TCP协议的基本概念&#xff1a; 二、TCP协议的主要特点&#xff1a; 2.1面向连接&#xff1a; 2.2可靠传输&#xff1a; 2.3基于字节流&#xff1a; 三、TCP连接的建立与终止&#xff1a; 3.1连接建立&#xff1a; 3.1.1SYN&#xff1a; 3…

全排列 递归

#全排列 递归写法 def permute(nums,l,r):if lr: #如果lr 说明指剩下最后一个元素了 返回当前列表print(.join(nums)) #字符串连接else:for i in range(l,r1): #进入循环#交换i l 两个元素位置nums[l],nums[i]nums[i],nums[l]#递归 调用permute(nums,l1,r) #l1 表示下一个元素…

js中“==” 和“===”的区别

在JavaScript中&#xff0c; 和 是两种比较操作符&#xff0c;它们的区别在于它们进行比较时对数据类型的处理方式不同。 “”&#xff08;相等&#xff09;操作符&#xff1a; “” 操作符在比较两个值时会进行类型转换&#xff0c;如果两个值的数据类型不同&#xff0c;它会…

MyBatis3源码深度解析(十一)MyBatis常用工具类(四)ObjectFactoryProxyFactory

文章目录 前言3.6 ObjectFactory3.7 ProxyFactory3.8 小结 前言 本节研究ObjectFactory和ProxyFactory的基本用法&#xff0c;因为它们在MyBatis的源码中比较常见。这里不深究ObjectFactory和ProxyFactory的源码&#xff0c;而是放到后续章节再展开。 3.6 ObjectFactory Obj…

朴素贝叶斯 | 多分类问题

目录 一. 贝叶斯公式的推导二. 朴素贝叶斯1. 离散的朴素贝叶斯朴素贝叶斯导入示例 离散的朴素贝叶斯训练 2. 连续的朴素贝叶斯3. 伯努利朴素贝叶斯4. 多项式朴素贝叶斯4.1 Laplace平滑4.2 Lidstone平滑 三. 概率图模型1. 贝叶斯网络(Bayesian Network)1.1 全连接贝叶斯网络1.2 …

中国城市统计年鉴、中国县域统计年鉴、中国财政统计年鉴、中国税务统计年鉴、中国科技统计年鉴、中国卫生统计年鉴​

统计年鉴是指以统计图表和分析说明为主&#xff0c;通过高度密集的统计数据来全面、系统、连续地记录年度经济、社会等各方面发展情况的大型工具书来获取统计数据资料。 统计年鉴是进行各项经济、社会研究的必要前提。而借助于统计年鉴&#xff0c;则是研究者常用的途径。目前国…

redis在微服务领域的贡献,字节跳动只面试两轮

dubbo.registry.addressredis://127.0.0.1:6379 注册上来的数据是这样&#xff0c;类型是hash /dubbo/ s e r v i c e / {service}/ service/{category} 如 /dubbo/com.newboo.sample.api.DemoService/consumers /dubbo/com.newboo.sample.api.DemoService/providers has…

软件设计师14--死锁资源数计算

软件设计师14--死锁资源数计算 考点1&#xff1a;进程管理 - 死锁问题例题&#xff1a; 考点1&#xff1a;进程管理 - 死锁问题 所谓死锁&#xff0c;是指两个以上的进程相互要求对方已经占有的资源导致无法继续运行下去的现象。 死锁四大条件&#xff1a; 互斥保持和等待不…

Prompt Learning:人工智能的新篇章

开篇&#xff1a;AI的进化之旅 想象一下&#xff0c;你正在和一位智能助手对话&#xff0c;它不仅理解你的问题&#xff0c;还能提出引导性的问题帮助你更深入地思考。这正是prompt learning的魔力所在——它让机器学习模型变得更加智能和互动。在这篇博客中&#xff0c;我们将…