Prompt Learning:人工智能的新篇章

在这里插入图片描述

开篇:AI的进化之旅

想象一下,你正在和一位智能助手对话,它不仅理解你的问题,还能提出引导性的问题帮助你更深入地思考。这正是prompt learning的魔力所在——它让机器学习模型变得更加智能和互动。在这篇博客中,我们将探索prompt learning的奥秘,它如何改变我们与AI的互动方式,以及它在未来可能带来的变革。

定义与背景

Prompt learning是一种新兴的机器学习方法,它通过在训练数据中嵌入特定的提示(prompts)来引导模型学习。这种方法的灵感来自于人类学习过程,我们在学习新概念时往往会通过问题和提示来加深理解。Prompt learning的核心在于,它能够使模型在面对新任务时表现出更好的泛化能力。

工作原理

prompt learning的工作原理基于一个核心观察:预训练语言模型在大量文本数据上学习了丰富的语言知识,这些知识可以通过适当的提示(Prompt)来激活,从而使模型能够应用于特定的任务。以下是Prompt Learning的工作原理的详细解读:

1. 预训练语言模型

预训练语言模型是Prompt Learning的基石。这些模型通常在大规模文本语料库上进行预训练,学习语言的通用知识和结构。这种预训练过程使得模型能够理解词汇、句法、语义等语言元素,并在一定程度上掌握语言的常识和逻辑。

2. 设计Prompt

在Prompt Learning中,Prompt的设计至关重要。Prompt通常是一个包含占位符(如“[MASK]”)的文本模板,用于引导模型理解任务需求并给出预期输出。例如,在情感分析任务中,Prompt可以是“这句话的情感是[MASK]的。”,其中[MASK]是模型需要预测的部分。

3. 激活模型知识

通过将输入数据填充到Prompt中,模型的预训练知识被激活。模型根据Prompt的结构和上下文来理解任务,并利用其预训练的语言知识来生成符合Prompt要求的输出。这一过程通常涉及到对模型的最后一层或特定层的输出进行解码和处理。

4. 微调和适应性学习

在某些情况下,为了提高模型在特定任务上的性能,可以对模型进行微调或适应性学习。这意味着在特定任务的数据上继续训练模型,使其更好地适应Prompt和任务需求。这一步骤可以根据任务的复杂性和数据量进行调整。

5. 输出和后处理

模型根据Prompt生成的输出通常需要经过后处理才能转化为最终的任务结果。例如,在分类任务中,模型输出的概率分布需要转换为具体的类别标签;在生成任务中,模型输出的文本可能需要进行进一步的格式化和修正。

总的来说,Prompt Learning的工作原理是通过设计合适的Prompt来激活预训练语言模型的知识,使其能够理解和执行特定的任务。这种方法的优势在于它能够充分利用预训练模型的强大能力,同时通过Prompt的设计和微调来适应各种不同的任务需求。

应用实例

Prompt Learning在自然语言处理领域有着广泛的应用,以下是一些具体的实践例子:

1. 情感分析

任务描述:判断一段文本的情感倾向是正面的还是负面的。

Prompt设计:可以设计Prompt为“这句话的情感是[MASK]的。”,其中[MASK]需要模型填充“正面”或“负面”。

实践过程

  • 输入一段文本:“我今天非常开心。”
  • 将文本填充到Prompt中:“这句话的情感是[MASK]的。”
  • 模型预测填充词,输出“正面”。
  • 根据模型的输出,得到文本的情感倾向是正面的。

2. 文本分类

任务描述:将新闻文章分类到预定义的类别中(如体育、政治、科技等)。

Prompt设计:可以设计Prompt为“这篇新闻是关于[MASK]的。”,其中[MASK]需要模型填充对应的类别。

实践过程

  • 输入一篇新闻文章:“巴塞罗那足球俱乐部赢得了冠军。”
  • 将文章摘要填充到Prompt中:“这篇新闻是关于[MASK]的。”
  • 模型预测填充词,输出“体育”。
  • 根据模型的输出,将这篇新闻归类到体育类别。

3. 命名实体识别

任务描述:识别文本中的命名实体(如人名、地名、机构名等)。

Prompt设计:可以设计Prompt为“在这句话中,[MASK]是一个实体。”,并将文本中的每个词依次替换为[MASK]进行预测。

实践过程

  • 输入一段文本:“乔治华盛顿是美国的第一任总统。”
  • 将每个词依次替换为[MASK]并填充到Prompt中,如“在这句话中,[MASK]是一个实体。”
  • 模型分别对每个位置进行预测,输出“乔治华盛顿”和“美国”为实体。
  • 根据模型的输出,识别出文本中的命名实体。

4. 问答系统

任务描述:根据给定的文本和问题,提供相应的答案。

Prompt设计:可以设计Prompt为“根据以下内容:[Context],问题:[Question],答案是[MASK]。”,其中[Context]是背景文本,[Question]是问题,[MASK]是模型需要填充的答案。

实践过程

  • 输入一个背景文本和问题:“牛顿是谁?”
  • 将背景文本和问题填充到Prompt中:“根据以下内容:牛顿是一位著名的物理学家,问题:牛顿是谁?,答案是[MASK]。”
  • 模型预测填充词,输出“一位著名的物理学家”。
  • 根据模型的输出,得到问题的答案。

这些实践例子展示了Prompt Learning在不同任务中的应用,通过设计合适的Prompt,可以引导预训练语言模型有效地完成特定的自然语言处理任务。

优势与挑战

Prompt learning的优势在于它的灵活性和效率。它减少了对大量标注数据的依赖,使得模型能够在更少的数据上进行训练。然而,这种方法也面临着挑战,比如对prompt的质量高度依赖,以及可能引入的偏见问题。研究人员正在努力解决这些问题,以确保prompt learning的健康发展。

未来展望

随着技术的不断进步,prompt learning有望在更多领域发挥作用。我们可以预见,未来的AI系统将更加智能,能够更好地理解人类的需求并提供个性化的解决方案。Prompt learning可能是实现这一愿景的关键。

互动环节

现在,让我们来做一个简单的测验,看看你对prompt learning的理解:

  1. Prompt learning是通过什么方式影响模型的输出?

    • A. 增加数据量
    • B. 改变模型结构
    • C. 添加引导性提示
    • D. 减少训练时间
  2. 在prompt learning中,以下哪个因素对模型输出影响最大?

    • A. 数据量
    • B. 模型复杂度
    • C. Prompt的质量
    • D. 训练时间

结论

Prompt learning为我们打开了一扇通往更智能AI世界的大门。它不仅提高了模型的效率和泛化能力,还为个性化和交互式AI应用提供了新的可能性。尽管存在挑战,但随着研究的深入,我们有理由相信,prompt learning将成为未来AI发展的重要驱动力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/743305.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安装MySQL8.0及以上版本操作步骤

关于mysql安装过程中命令mysqld --initialize --console出错的解答 C:\mysql-8.3.0-winx64\bin>mysqld --initialize --usermysql --console 2024-03-12T11:21:23.201387Z 0 [System] [MY-015017] [Server] MySQL Server Initialization - start. 2024-03-12T11:21:23.2068…

【05】消失的数字

hellohello~这里是土土数据结构学习笔记🥳🥳 💥个人主页:大耳朵土土垚的博客 💥所属专栏:C语言函数实现 感谢大家的观看与支持🌹🌹🌹 有问题可以写在评论区或者私信我哦…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:Text)

显示一段文本的组件。 说明: 该组件从API Version 7开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。 子组件 可以包含Span和ImageSpan子组件。 接口 Text(content?: string | Resource, value?: TextOptions) 从API versi…

论文阅读——ViTAE

ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias ViTAE旨在将细胞神经网络中固有的IB引入视觉转换器。如图2所示,ViTAE由两种类型的细胞组成,即RC和NC。RC负责将多尺度上下文和局部信息嵌入到令牌中,NC用于进一步…

AUTOSAR软件配置(3):MCAL下载安装

前言 所有的NXP软件的下载安装都是需要自己在官网去注册账号的 中文的NXP官方网址:恩智浦半导体官方网站 | NXP 半导体 注:本文指导安装教程将以S32K144平台为例展开。 下载 找到下载入口的指引 然后在左侧的导航栏找到AUTOSAR 然后选择4.2版本 在…

java-集合工具类Collections

我们在使用它的时候记得导包 常见API 我们就简单看看第一第二个方法,代码如下,其余的知道用就行

信息系统项目管理师--沟通管理

IT 项⽬成功有关的最重要的四个因素是:主管层的⽀持、⽤户参与、有经验的项⽬经理和清晰的业务⽬标 项⽬沟通管理是确保及时、正确地产⽣、收集、分发、存储和最终处理项⽬信息所需的过程 项⽬沟通管理由两部分组成:⼀是制定策略,确保沟通对…

leetcode一天一题-第1天

为了增加自己的代码实战能力,希望通过刷leetcode的题目,不断提高自己,增加对代码的理解,同时开拓自己的思维方面。 题目名称:两数之和 题目编号:1 题目介绍: 给定一个整数数组 nums 和一个整数…

中介者模式(Mediator Pattern)

中介者模式 说明 中介者模式(Mediator Pattern)属于行为型模式,又称为调解者模式或调停者模式。用一个中介对象封装一系列的对象交互,中介者使各对象不需要显示地相互作用,从而使其耦合松散,而且可以独立…

【AI大模型应用开发】【LangChain系列】9. 实用技巧:大模型的流式输出在 OpenAI 和 LangChain 中的使用

大家好,我是同学小张,日常分享AI知识和实战案例欢迎 点赞 关注 👏,持续学习,持续干货输出。v: jasper_8017 一起交流💬,一起进步💪。微信公众号也可搜【同学小张】 🙏 本…

Python使用openpyxl库或pandas库创建.xlsx格式的Excel文件,并向文件不同的sheet按行或按列写入内容

import openpyxl# 创建-一个Workbook对象 wb openpyxl.Workbook()# 创建多个工作表 sheet1 wb.active sheet1.title "s1"sheet2 wb.create_sheet("s2")# 在不同的工作表中写入数据 sheet1["A1"] Data for Sheet1 sheet1["A2"] D…

数学问题难解?新研究提出MathScale方法,让AI更懂数学推理

引言:数学问题解决中的语言模型挑战 数学问题解决是一个复杂的认知过程,它要求参与者不仅要掌握数学知识,还要能够进行多步骤的逻辑推理。近年来,大语言模型(LLMs)在解决问题方面展现出了显著的能力&#…

18. 查看帖子详情

文章目录 一、建立路由二、开发GetPostDetailHandler三、编写logic四、编写dao层五、编译测试运行 一、建立路由 router/route.go v1.GET("/post/:id", controller.GetPostDetailHandler)二、开发GetPostDetailHandler controller/post.go func GetPostDetailHand…

java数据结构与算法刷题-----LeetCode90. 子集 II

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846 文章目录 解题思路:时间复杂度O( n 2 ∗ n n^2*n n2∗n),空间复杂度O(n) 7…

JAVA初阶数据结构栈(工程文件后续会上传)(+专栏数据结构练习是完整版)

1.栈的概念讲解(Stack)) 定义:栈是一种先进后出的数据结构 要想拿到12就要把它头上的所有东西给移出去 2.栈的实现(代码) 2.1栈的方法逻辑的讲解 (1)新建一个测试类Frank (2)进…

机器学习模型—决策树

机器学习模型—决策树 决策树是最强大和最流行的算法之一。Python 决策树算法属于监督学习算法的范畴。它适用于连续输出变量和分类输出变量也就是可以处理分类和回归任务。在本文中,我们将在 UCI 上提供平衡秤体重和距离数据库上用 Python 算法实现决策树。 决策树算法,是…

【MySQL探索之旅】MySQL数据表的增删查改(初阶)

📚博客主页:爱敲代码的小杨. ✨专栏:《Java SE语法》 | 《数据结构与算法》 | 《C生万物》 |《MySQL探索之旅》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更新的动力❤️ &…

【Java设计模式】十九、中介者模式

文章目录 1、中介者模式2、案例3、总结 1、中介者模式 如图: 同事类之间关联较多时,整体出现网状结构,耦合度极高。一个对象一变动,好多对象都得改。若变为右边的星形结构,则一个类的变动,只影响自身与中介…

二叉树算法

递归序 每个节点都能回到3次! 相当于2执行完然后返回了代码会往下走,来到3节点 小总结: 也就是4节点先来到自己一次,不会执行if,先调用自己左边的那个函数,但是是null,直接返回。 这个函数执行完了,就会回到自己,调用自己右边的那个函数,结果又是空,又返回,回到…

鸿蒙API9+axios封装一个通用工具类

使用方式: 打开Harmony第三方工具仓,找到axios,如图: 第三方工具仓网址:https://ohpm.openharmony.cn/#/cn/home 在你的项目执行命令:ohpm install ohos/axios 前提是你已经装好了ohpm ,如果没…