如何在数据库中存储小数:FLOAT、DECIMAL还是BIGINT?

前言

这里还是用前面的例子: 在线机票订票系统的数据表设计。此时已经完成了大部分字段的设计,可能如下:

CREATE TABLE flights (   flight_id INT AUTO_INCREMENT PRIMARY KEY,   flight_number VARCHAR(10),   departure_airport_code VARCHAR(3),   arrival_airport_code VARCHAR(3)
); 

考虑到还需要存储机票的订单金额,此时需要新增 price 字段来存储金额。金额一般都需要考虑小数,如99.99,而在MySQL中存储小数的方法其实有多种,比如:

  • FLOAT/DOUBLE:浮点数类型,能够直接存储小数,同时基本上不需要考虑数据范围
  • DECIMAL: 定点数类型,能够精确表示一个小数,比如直接存储99.99.
  • BIGINT: 可以将小数转换为整数,比如将99.99 转换为 9999, 然后将其保存到数据库当中

这里我们该如何选择,才能让数据库在实现需求的同时,也保证数据库的高性能呢? 下面我们先充分了解下所有可能的选择,在这个基础上再来对比比较,从而选出最为合适的类型。

数据类型

FLOAT/DOUBLE

FLOATDOUBLE 是浮点数类型,分别用于表示单精度和双精度浮点数。单精度浮点数 FLOAT 使用 32 位来存储一个浮点数,双精度浮点数DOUBLE 使用 64 位来存储一个浮点数。

其特点是能够表示非常大或非常小的数值。下面举一个例子,创建一个简单的数据表,其中包含几个 FLOATDOUBLE 类型的字段,以及一些示例数据,以展示这些数据类型能够表示的非常大和非常小的数值。

CREATE TABLE floating_point_values (     id INT AUTO_INCREMENT PRIMARY KEY,     small_float FLOAT,     large_float FLOAT,     small_double DOUBLE,     large_double DOUBLE 
);  

floating_point_values 的表,其中包含了四个列,具体含义如下:

  • small_float:用 FLOAT 类型来存储非常小的数值。
  • large_float:用 FLOAT 类型来存储非常大的数值。
  • small_double:用 DOUBLE 类型来存储非常小的数值。
  • large_double:用 DOUBLE 类型来存储非常大的数值。

然后往其中插入了一条记录,展示了 FLOATDOUBLE 类型能够表示的数值范围。

INSERT INTO floating_point_values (small_float, large_float, 
small_double, large_double) 
VALUES  (-3.402823466E+38,3.402823466E+38, 
-1.7976931348623157E+308, 1.7976931348623157E+308);

这些数值使用科学记数法表示,其中 E (或 e) 表示 10 的幂。例如,1.5E-45 表示 1.5 乘以 10 的 -45 次方,而 3.4E+38 表示 3.4 乘以 10 的 38 次方。 下面简单查看插入到数据库中的数据:

mysql> select * from floating_point_values;
+----+-------------+-------------+-------------------------+------------------------+
| id | small_float | large_float | small_double            | large_double           |
+----+-------------+-------------+-------------------------+------------------------+
|  8 | -3.40282e38 |  3.40282e38 | -1.7976931348623157e308 | 1.7976931348623157e308 |
+----+-------------+-------------+-------------------------+------------------------+
1 row in set (0.03 sec)

可以看到,FLOATDOUBLE 可以表示非常小或者非常大的数值,使用该类型来存储数据,基本上不用考虑数据范围的问题。之所以能够存储这么大或者这么小的数,在于其底层是遵循 IEEE 754 标准,该标准定义了浮点数的存储和算术运算规则,这里关于 IEEE 754 标准的内容就不再展开,感兴趣的朋友可自行查阅资料。

但是这两种类型存在一个关键的问题,FLOATDOUBLE 不是精确的数值类型,可能会引入舍入误差。下面是一个经典的例子,在理想的情况下,0.1 + 0.2 应该等于 0.3,但是在执行这个查询时,结果可能会出人意料。

下面通过创建一个简单的表,展示这个例子,表结构定义如下:

-- 创建一个名为 prices 的表,其中包含两个 DOUBLE 类型的列
CREATE TABLE prices (   price1 DOUBLE,   price2 DOUBLE 
);  
-- 插入一些可能导致精度问题的值
INSERT INTO prices (price1, price2) VALUES (0.1, 0.2);  

通过查询表并检查两个价格 price1 和 price2 的和是否等于 0.3:

mysql> SELECT price1, price2, price1 + price2 AS total, (price1 + price2) = 0.3 AS IsEqual FROM prices; 
+--------+--------+---------------------+---------+
| price1 | price2 | total               | IsEqual |
+--------+--------+---------------------+---------+
|    0.1 |    0.2 | 0.30000000000000004 |       0 |
+--------+--------+---------------------+---------+

可以看到 price1price2 的总和(即 total 列)实际上是一个略大于 0.3 的值,这是由于浮点数的精度问题导致的。因此,IsEqual 列显示为 0,表明 (price1 + price2) 的结果并不等于 0.3。

之所以存在精度问题的原因,这里也可以简单类比说明一下。在十进制系统中,有些分数不能精确表示(例如,1/3 等于 0.3333...,小数点后的 3 会无限重复)。

类似地,在二进制(基数为 2)系统中,有些十进制分数也不能被精确表示,因为它们在二进制中是无限循环小数。例如,十进制的 0.1 在二进制中会变成一个无限循环的分数:

0.1 (十进制) = 0.0001100110011001100110011001100110011... (二进制) 

由于计算机内存是有限的,浮点数类型必须在某一点截断这个无限循环,这就导致了精确度的丧失。

所以如果在处理涉及金融和需要高精度的数据时,应该避免使用FLOAT/DOUBLE类型,从而由于这种类型的舍入误差,导致系统出现问题。

DECIMAl

DECIMAL 类型与 FLOAT/DOUBLE 类型不同,DECIMAL 类型是一种定点数数据类型,它用于存储精确的数值,其在存储和计算时不会丢失精度,这使得它特别适合用于需要精确计算的应用场景。下面举个例子说明一下:

-- 创建一个名为 exact_prices 的表,其中包含两个 DECIMAL 类型的列
CREATE TABLE exact_prices (   price1 DECIMAL(10, 2),   price2 DECIMAL(10, 2) );  -- 插入精确的十进制值
INSERT INTO exact_prices (price1, price2) VALUES (0.1, 0.2);  -- 查询表并检查两个价格的和是否等于 0.3
SELECT price1, price2, price1 + price2 AS total, (price1 + price2) = 0.3 AS IsEqual FROM exact_prices; 

执行上述插入和查询应该得到以下结果:

+--------+--------+-------+---------+
| price1 | price2 | total | IsEqual |
+--------+--------+-------+---------+
|   0.10 |   0.20 |  0.30 |       1 |
+--------+--------+-------+---------+

在这个例子中,与使用 FLOAT/DOUBLE 类型不同,price1 和 price2 的和恰好是 0.30,这是因为 DECIMAL 类型提供了精确的数值计算而不会引入浮点数的舍入误差。因此,IsEqual 列显示为 1,表明 (price1 + price2) 的结果确实等于 0.3。所以涉及金融和需要高精度的数据时,DECIMAL 类型是个更好的选择。

在声明 DECIMAL 类型时,可以指定精度(总共的数字个数)和标度(小数点后的数字个数)。格式为 DECIMAL(M, D),其中 M 是精度, 代表最多能够存储 D 是标度。

例如,DECIMAL(10, 2) 可以存储最大为 99999999.99 的数值,其中 整数位数最多为 M - D,也就是 10 - 2 = 8 位,而小数位数最多保存两位小数。下面举个例子来说明一下:

CREATE TABLE financial_records (     id INT AUTO_INCREMENT PRIMARY KEY,     transaction_amount DECIMAL(10, 2) -- 10位精度,其中包含2位小数 
);  

这个例子中,financial_records 表的 transaction_amount 字段被定义为 DECIMAL(10, 2) 类型,意味着可以存储最多 8 位整数和 2 位小数的数值。比如下面这个数据就能正常存入:

INSERT INTO financial_records(transaction_amount) VALUES (12345.67); 

如果小数位数超过2位,此时将会进行四舍五入,最终只会保存2位小数,示例如下:

mysql> INSERT INTO financial_records (transaction_amount) VALUES (12345.688);
Query OK, 1 row affected, 1 warning (0.03 sec)mysql> select * from financial_records;
+----+--------------------+
| id | transaction_amount |
+----+--------------------+
|  3 |           12345.69 |
+----+--------------------+
1 row in set (0.03 sec)

DECIMAL 还有一个注意点,便是其在 MySQL 中是有长度限制的。在 MySQL 中 DECIMAL 类型的最大精度(即数字的总位数,包括小数点前后的数字)可以达到 65 位。这意味着 DECIMAL 类型的数字的总位数不能超过 65。

下面通过一个示例演示一下,看看 DECIMAL 的位数超过65位,此时会发生什么:

-- 创建一个名为 example_decimal 的表,包含一个 DECIMAL 类型的列
CREATE TABLE example_decimal (   amount DECIMAL(65, 30) -- 正确的 DECIMAL 定义 
);  -- 尝试创建一个 DECIMAL 列,其精度超过了最大限制
CREATE TABLE example_decimal_too_large (   amount DECIMAL(66, 30) -- 错误的 DECIMAL 定义,因为精度超过了 65 
); 

可以看到,DECIMAL 的精度为65时,此时是能正常定义的;在第二个 CREATE TABLE 语句中,我们尝试创建一个精度为 66 的 DECIMAL 字段,此时将会报错,具体如下:

ERROR 1426 (42000): Too-big precision 66 specified for 'amount'. Maximum is 65.

从功能层面上看,DECIMAL可以在需要精确计算的场景,很好得满足我们的诉求。下面我们来看看 DECIMALFLOAT/DOUBLE 类型在存储空间和执行效率上的比较,看看在这精确性的要求下,我们会付出怎样的代价。

这里通过创建两个表,其中一个使用 DECIMAL 来存储数据,一个使用 DOUBLE 类型来存储数据:

-- 创建使用 DECIMAL 类型的表
CREATE TABLE decimal_table (   id INT AUTO_INCREMENT PRIMARY KEY,   decimal_col DECIMAL(30,10) );-- 创建使用 DOUBLE 类型的表CREATE TABLE double_table (   id INT AUTO_INCREMENT PRIMARY KEY,   double_col DOUBLE );  

然后使用存储过程往其中插入100w条数据,存储过程展示如下:

-- 创建存储过程插入数据
DELIMITER $$CREATE PROCEDURE InsertData()
BEGINDECLARE i INT DEFAULT 0;WHILE i < 1000000 DOINSERT INTO decimal_table (decimal_col) VALUES (RAND() * 1000000000.1234567890);INSERT INTO double_table (double_col) VALUES (RAND() * 1000000000.1234567890);SET i = i + 1;END WHILE;
END$$DELIMITER ;-- 调用存储过程来插入数据
CALL InsertData();

此时 decimal_tabledouble_table 表中都有100w条数据,我们下面将通过执行查询语句来比较 DECIMALFLOAT/DOUBLE 类型在存储效率、性能上的差异。

下面通过这个SQL查看 decimal_tabledouble_table 两张表占用的磁盘的大小:

mysql> SELECT  table_name AS 'Table',   round(((data_length + index_length) / 1024 / 1024), 2) 'Size in MB' FROM information_schema.TABLES WHERE table_schema = 'test' AND table_name in ('decimal_table', 'double_table');
+---------------+------------+
| Table         | Size in MB |
+---------------+------------+
| decimal_table |      38.56 |
| double_table  |      32.56 |
+---------------+------------+
2 rows in set (0.02 sec)

可以看到 decimal_table 占用的磁盘空间确实比 double_table 大一些,但是可以看到,其大小差距并不是很大,仅相差大约20%。

尽管 DECIMAL 使用了更多的字节来确保精确度,但由于其优化的存储方式,空间占用并没有显著增加。

事实上从 MySQL 5.0 开始,DECIMAL 类型的存储被优化为每4个字节存储9个十进制数字(对于小数点前的数字和小数点后的数字都是如此)。

不过这也意味着每个 DECIMAL 数字的存储大小是其精度的函数,而不是数值的大小。

下面我们来看看 DECIMAL 类型在性能上的表现。一般来说由于 DECIMAL 类型是用来进行精确的定点数计算的,它在处理和存储数据时通常会比 DOUBLE 类型慢。

下面我们编写一个Python脚本,会对前面定义的decimal_tabledouble_table 进行重复的数值运算,从而能够直观得展示二者的性能差异,脚本如下:

import mysql.connector
from time import time# 定义数学运算函数
def math_operation_test(table_name, num_trials):if table_name == "decimal_table":update_query = f"UPDATE {table_name} SET decimal_col = decimal_col * 1.0000000001 WHERE id % 4 = 0;"else:update_query = f"UPDATE {table_name} SET double_col = double_col * 1.0000000001 WHERE id % 4 = 0;"total_time = 0for _ in range(num_trials):start_time = time()cursor.execute(update_query)cnx.commit()total_time += time() - start_timereturn total_time / num_trials, total_time  # 返回平均执行时间if __name__ == '__main__':# 连接数据库db_config = {'user': 'user','password': 'password','host': 'hostname','port': port,'database': 'test'}try:cnx = mysql.connector.connect(**db_config)cursor = cnx.cursor()# 定义测试次数num_trials = 100# 进行数学运算测试decimal_avg_time, decimal_total_time = math_operation_test('decimal_table', num_trials)double_avg_time, double_total_time = math_operation_test('double_table', num_trials)# 输出结果print(f"Average DECIMAL Math Operation Time: {decimal_avg_time} seconds")print(f"Average DOUBLE Math Operation Time: {double_avg_time} seconds")print(f"DECIMAL Math Total Operation Time: {decimal_total_time} seconds")print(f"DOUBLE Math Total Operation Time: {double_total_time} seconds")# 关闭连接cursor.close()cnx.close()except mysql.connector.Error as err:print(f"Error: {err}")

在这个脚本中,我们多次调用数学运算函数,取其每次计算的平均值以及总计算耗时,获得 decimaldouble 这两种类型在高频率数学运算的差异:

Total DECIMAL Math Operation Time: 135.5842161178589 seconds
Total DOUBLE Math Operation Time: 118.5552248954773 seconds
Average DECIMAL Math Operation Time: 1.355842161178589 seconds
Average DOUBLE Math Operation Time: 1.185552248954773 seconds

可以看到DECIMAL 类型平均一次计算耗时需要1.38s,而DOUBLE 类型平均一次计算耗时为1.18s。

从这个对比结果可以看出 DECIMAL 类型的计算时间比 FLOATDOUBLE 类型的计算时间要长。这就是为了精确度而付出的性能代价。

整形

在实际开发中,BIGINT 类型也是常见的存储小数的一种方式,其既能具备 FLOAT/DOUBLE 类型的高性能,同时也能够拥有 DECIMAL 类型的准确性,使得其非常适合既需要高性能,也需要准确性的场景下使用。

这里关于 BIGINT 类型的存储效率,查询效率的对比验证,这里就不再展开,可以参考上面的对比过程。下面通过一个例子,展示其在获取高性能和精确性的情况下,不可避免带来代码复杂性的问题。

使用 BIGINT 存储小数的方法依赖于将小数转换为整数,下面举个例子来说明。这里需要一个字段来存储订单的金额,而这些金额通常有两位小数。这里使用 BIGINT 类型来存储的一个方式,是将金额放大100倍,以分为单位来进行存储:

CREATE TABLE financial_transactions (     id INT AUTO_INCREMENT PRIMARY KEY,     amount BIGINT  -- 金额以分为单位存储     ); 

在这个表中,amount 字段将用来存储以分为单位的金额,这样100分等于1元。所以这里需要在程序中对其进行转换。在插入数据时,需要在应用层将金额转换为分:

def insert_transaction(cursor, amount):# 将金额转换为分amount_in_cents = int(amount * 100)# 插入数据cursor.execute("INSERT INTO financial_transactions (amount) VALUES (%s)", (amount_in_cents,))if __name__ == '__main__':# 连接数据库db_config = {# ... 这里省略}# 获取数据库连接cnx = mysql.connector.connect(**db_config)cursor = cnx.cursor()# 插入金额为100.20insert_transaction(cursor, 100.20)cnx.commit()

当查询要查询并显示金额时,此时需要将存储的分转换回来,这需要在应用层对其进行转换:

def get_transactions(cursor):cursor.execute("SELECT id, amount FROM financial_transactions")transactions = cursor.fetchall()for transaction in transactions:# 将分转换回金额amount_in_dollars = transaction[1] / 100.0print(f"Transaction ID: {transaction[0]}, Amount: {amount:.2f}")

所以虽然 BIGINT 类型既能保证精确性,也具备高性能。但是这不可避免增加了代码的复杂性,并增加了出错的可能性。

在使用 BIGINT 类型存储小数时,此时需要选择一个因数(比如100或1000)来乘以你的小数值,转换为整数。

这个因数决定了我们能够表示的小数精度。也必须确保在所有的计算中都使用同样的因数,这样才能保证计算的一致性和正确性。其次在查询展示时,也需要多一次转换才能获取到原本的数据。

从这里我们也可以看出来,没有一种数据类型是完美的,总是有权衡的。所以如果决定使用某种类型来存储数据时,需要确保自己已经综合考虑了各种因素。

怎么选择

在MySQL中存储小数方式,如上所述,可以选择FLOAT/DOULE 类型, DECIMAL 类型,也可以选择 BIGINT 类型。但是对于某一个业务场景来说,往往只有某一种类型在满足时间精度要求的前提下,在存储效率,查询性能上表现得更为优秀。

下面我们再汇总上面的内容,展示这几种类型在数据精度,存储效率,查询性能,代码复杂性等几个维度上的差异:

类型/比较维度FLOAT/DOUBLEDECIMABIGINT
数据精度某些数据存在精度问题精确存储小数精确存储小数
存储效率4字节/8字节精度越高,存储效率越低8字节
查询性能查询性能高相对较低查询性能高
代码复杂度无需额外的数据转换无需额外的数据转换需额外的数据转换,更复杂

可以看到,由于 FLOAT/DOUBLE 存在精度丢失的问题,所以对于需要精确计算的场景,如金额存储,此时就不适合使用该种类型;

但是如果不需要精确计算的话,使用 FLOAT/DOUBLE 类型就非常合适,其能够表示非常大或非常小的数值,同时性能也比较好。

DECIMAL 提供精确的小数点运算,没有浮点数的舍入误差,就非常适合精确计算的场景,如金额存储。

相对的,DECIMAL 的运算可能会更慢。同时存储空间占用也会更多,尤其是在存储很多小数位数时。这也是其精确计算所需要付出的代价。

对于 BIGINT 类型,对于小数的存储,其存储效率高,同时性能也较好,但是不可避免会带来代码复杂性的提高,所以如果不是对性能特别敏感的场景,可以考虑使用 DECIMAL 类型。

回到最前面数据库设计的问题上,我这里这么金额字段的定义:

  • FLOAT/DOUBLE: 需要考虑金额的精确存储,此时不考虑
  • BIGINT: 并不需要进行大量的数学计算,对性能要求并没有特别敏感,不考虑
  • DECIMAL: 能够对金额进行精确存储,能够较好得满足需求

所以综合考虑之下,最终选择了 DECIMAL 类型来对金额进行存储:

CREATE TABLE flights (   flight_id INT AUTO_INCREMENT PRIMARY KEY,   flight_number VARCHAR(10),   departure_airport_code VARCHAR(3),   arrival_airport_code VARCHAR(3),price DECIMAL(10, 2) 
); 

DECIMAL(10, 2) 表示这个字段可以存储最高为10位数的数字,其中包括2位小数。这意味着最大的金额可以是 99999999.99,基本能够满足需求。

总结

在小数类型存储上,MySQL提供了多种类型的选择,如 FLOAT,DOUBLE, DECIMAL, BIGINT 类型,都可以对小数进行存储。不过往往在某个场景下,只有一个类型才最满足要求。

本文详细介绍了各种数据类型,同时在数据精度,存储效率,执行效率,代码复杂性等维度上对其进行了比较,展示了其长处和相对应的缺点。

从而能够在数据库设计时,作出更准确,更高效的选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/742971.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[论文精读]Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection

论文网址&#xff1a;[2304.08876] 用于定向微小目标检测的动态粗到细学习 (arxiv.org) 论文代码&#xff1a;https://github.com/ChaselTsui/mmrotate-dcfl 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&…

支付模块-基于消息队列发送支付通知消息

消息队列发送支付通知消息 需求分析 订单服务作为通用服务&#xff0c;在订单支付成功后需要将支付结果异步通知给其他对接的微服务&#xff0c;微服务收到支付结果根据订单的类型去更新自己的业务数据 技术方案 使用消息队列进行异步通知需要保证消息的可靠性即生产端将消息…

深入了解 大语言模型(LLM)微调方法

引言 众所周知&#xff0c;大语言模型(LLM)正在飞速发展&#xff0c;各行业都有了自己的大模型。其中&#xff0c;大模型微调技术在此过程中起到了非常关键的作用&#xff0c;它提升了模型的生成效率和适应性&#xff0c;使其能够在多样化的应用场景中发挥更大的价值。 那么&…

华为新设备升级示例

​ 新设备升级示例 升级前准备工作 准备升级工具&#xff0c;即操作终端PC、网线和串口线。准备所需版本系统软件。 企业用户&#xff1a;登录​​http://support.huawei.com/e​​&#xff0c;在搜索栏中输入交换机型号&#xff0c;单击搜索栏中联想出的路径&#xff0c;进…

服务器命令

服务器命令 服务器命令top查看任务 服务器命令 top查看任务 、ps 命令 ps 命令是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行和它所运行的状态、进程是否结束、进程有没有僵死、哪些进程占用了过多的资源等。总之大部分信息都是可以通过执行…

pytorch模型转onnx格式,编写符号函数实现torch算子接口和onnx算子的映射,新建简单算子--模型部署记录整理

对于深度学习模型来说&#xff0c;模型部署指让训练好的模型在特定环境中运行的过程。相比于软件部署&#xff0c;模型部署会面临更多的难题&#xff1a; 运行模型所需的环境难以配置。深度学习模型通常是由一些框架编写&#xff0c;比如 PyTorch、TensorFlow。由于框架规模、依…

JVM是如何解决跨代引用的?

JVM是如何解决跨代引用的&#xff1f; 跨代引用问题如何解决跨代引用记忆集&#xff08;Remembered Set&#xff09;卡表 写屏障 跨代引用问题 假如要现在进行一次只局限于新生代区域内的收集(Minor gc)&#xff0c;但新生代的对象1在老年代中被引用&#xff0c;为了找出该区域…

掌握Go语言:深入encoding/gob包的高效数据序列化

掌握Go语言&#xff1a;深入encoding/gob包的高效数据序列化 引言理解Gob和它的使用场景Gob的概念和设计目标Gob的适用场景和优势 开始使用Gob基本的Gob编码和解码示例代码编码&#xff08;序列化&#xff09;解码&#xff08;反序列化&#xff09; Gob编码高级应用自定义类型的…

c语言常见上机题

快速排序 快排很容易进入无限递归&#xff0c;写的时候要注意边界问题 #include<iostream>using namespace std;int n;const int N 1e6 10;void qsort(int a[],int l,int r){if(l>r) return;int xa[l],il-1,jr1;while(i<j){do i;while(a[i]<x);do j--;while(…

MFC中手动create创建的窗口,如何销毁释放?

在MFC中&#xff0c;当你手动创建一个窗口&#xff08;例如使用Create函数而不是通过对话框模板创建&#xff09;&#xff0c;你需要确保在适当的时候正确地销毁和释放该窗口。这通常涉及删除窗口对象并调用其析构函数&#xff0c;这将负责清理与窗口相关联的资源。 以下是一些…

【Java语言】遍历List元素时删除集合中的元素

目录 前言 实现方式 1.普通实现 1.1 使用【for循环】 方式 1.2 使用【迭代器】方式 2.jdk1.8新增功能实现 2.1 使用【lambda表达式】方式 2.2 使用【stream流】方式 注意事项 1. 使用【for循环】 方式 2. 不能使用增强for遍历修改元素 总结 前言 分享几种从List中移…

基于 K8s 容器集群的容灾架构与方案

作者&#xff1a;庄宇 在设计系统架构时&#xff0c;我们必须假设任何组件和任何基础设施可能会在任何时间失效&#xff0c;例如&#xff1a;自然灾害&#xff0c;电力中断&#xff0c;网络中断&#xff0c;错误的系统变更等。为了应对挑战&#xff0c;我们必须设计合适的容灾…

在centos8中部署Tomcat和Jenkins

参考链接&#xff1a;tomcat安装和部署jenkins_jenkins和tomcat-CSDN博客 1、进入centos中 /usr/local 目录文件下 [rootlocalhost webapps]# cd /usr/local2、使用通过wget命令下下载tomcat或者直接在官网下载centos版本的包后移动到centos中的local路径下 3、下载tomcat按…

VUE3内置组件Transition的学习使用

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 更多nbcio-boot功能请看演示系统RuoYi-Nbcio亿事达企业管理平台 gitee源代码地址 后端代码&#xff1a;…

详解Postman使用

简介&#xff1a; 1.简介 PostMan&#xff0c;一款接口调试工具。 特点&#xff1a; 可以保留接口请求的历史记录 可以使用测试集Collections有效管理组织接口 可以在团队之间同步接口数据 1.简介 PostMan&#xff0c;一款接口调试工具。 特点&#xff1a; 可以保留接口请求…

从0到1入门C++编程——12 演讲比赛流程管理系统

文章目录 一、创建类并显示菜单二、退出管理系统三、开始演讲比赛四、查看往届记录五、清空比赛记录六、案例源代码 演讲比赛流程管理系统 比赛规则&#xff1a;演讲比赛共有12个人参加&#xff0c;比赛分两轮进行&#xff0c;第一轮为淘汰赛&#xff0c;第二轮为决赛。每名选手…

HTML万字学习总结

html文本标签特殊符号图片音频与视频超链接表单列表表格语义标签(布局) html文本标签 标签简介根目录规定文档相关的配置信息&#xff08;元数据元素表示文档的内容表示那些不能由其它 HTML 元相关元素&#xff08;(<base>、<link>, <script>、<style>…

今日AI:GPT-4.5意外曝光可能6月发布、UP主借AI识别情绪播放量186万、全球首个AI程序员诞生

欢迎来到【今日AI】栏目!这里是你每天探索人工智能世界的指南&#xff0c;每天我们为你呈现AI领域的热点内容&#xff0c;聚焦开发者&#xff0c;助你洞悉技术趋势、了解创新AI产品应用。 新鲜AI产品点击了解:AIbase - 智能匹配最适合您的AI产品和网站 &#x1f4e2;一分钟速…

Netty优化

文章目录 概述优化方法性能篇网络参数优化业务线程池的必要性共享 ChannelHandler设置高低水位线GC 参数优化线程绑定 高可用篇连接空闲检测流量整形堆外内存泄漏排查思路Netty 自带检测工具二分排查法&#xff1a;笨方法解决大问题 概述 netty 是一种异步的、基于事件驱动的网…

Elastic boosting的使用

boosting介绍 Boosting查询允许您降低与负面查询匹配的文档的相关性评分 boosting语法 GET /_search {"query": {"boosting": {"positive": {"term": {"text": "apple"}},"negative": {"term&q…