[论文精读]Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection

论文网址:[2304.08876] 用于定向微小目标检测的动态粗到细学习 (arxiv.org)

论文代码:https://github.com/ChaselTsui/mmrotate-dcfl

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

1. 省流版

1.1. 心得

(1)为什么学脑科学的我要看这个啊?愿世界上没有黑工

(2)最开始写小标题的时候就发现了,分得好细啊,好感度++

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

        ①Extreme geometric shapes (tiny) and finite features (few pixels) of tiny rotating objects will cause serious mismatch (inaccurate positional prior?) and imbalance (inaccurate positive sample features?) issues

        ②They proposed dynamic prior and coarse-to-fine assigner, called DCFL

posterior  adj.在后部的;在后面的  n.臀部;屁股

2.2. Introduction

        ①Oriented bounding box greatly eliminates redundant background area, especially in aerial images

        ②Comparison figure:

where M* denotes matching function;

green, blue and red boxes are true positive, false positive, and false negative predictions respectively,

the left figure set is static and the right is dynamic

        ③Figure of mismatch and imbalance issues:

each point in the left figure denotes a prior location(先验打那么多个点啊...而且为啥打得那么整齐,这是什么one-shot吗

饼状图是说当每个框都是某个角度的时候吗?当每个框都不旋转的时候阳性样本平均数量是5.2?还是说饼状图的意思是自由旋转,某个特定角度的框的阳性样本是多少多少?这个饼状图并没有横向比较诶,只有这张图自己内部比较。

柱状图是锚框大小不同下平均阳性

        ④They introduce dynamic Prior Capturing Block (PCB) as their prior method. Based on this, they further utilize Cross-FPN-layer Coarse Positive Sample (CPS) to assign labels. After that, they reorder these candidates by prediction (posterior), and present gt by finer Dynamic Gaussian Mixture Model (DGMM)

eradicate  vt.根除;消灭;杜绝  n.根除者;褪色灵

2.3. Related Work

2.3.1. Oriented Object Detection

(1)Prior for Oriented Objects

(2)Label Assignment

2.3.2. Tiny Object Detection

(1)Multi-scale Learning

(2)Label Assignment

(3)Context Information

(4)Feature Enhancement

2.4. Method

(1)Overview

        ①For a set of dense prior P\in\mathbb{R}^{W\times H\times C}, where W denotes width, H denotes height and C denotes the number of shape information(什么东西啊,是那些点吗), mapping it to D by Deep Neural Network (DNN):

D=\mathrm{DNN}_{h}(P)

where \mathrm{DNN}_{h} represents the detection head(探测头...外行不太懂,感觉也就是一个函数嘛?);

one part D_{cls}\in\mathbb{R}^{W\times H\times A} in D denotes the classification scores, where A means the class number(更被认为是阳性的样本那层的W\times H里的数据会更大吗);

one part D_{reg}\in\mathbb{R}^{W\times H\times B} in D denotes the classification scores, where B means the box parameter number(什么东西?box parameter?什么是箱参数?

        ②In static methods, the pos labels assigned for P is G=\mathcal{M}_{s}(P,GT)

        ③In dynamic methods, the pos labels set G integrate posterior information: G={\mathcal M}_{d}(P,D,GT)

        ④The loss function:

\mathcal{L}=\sum_{i=1}^{N_{pos}}\mathcal{L}_{pos}(D_{i},G_{i})+\sum_{j=1}^{N_{neg}}\mathcal{L}_{neg}(D_{j},y_{j})

where N_{pos} and N_{neg} represent the number of positive and negative samples, y_i is the neg labels set

        ⑤Modelling D{\mathcal M}_{d} and GT:

\tilde{D}=\mathrm{DNN}_{h}(\underbrace{\mathrm{DNN}_{p}(P)}_{\text{Dynamic Prior}\hat{P}})

\tilde{G}=\mathcal{M}_{d}(\mathcal{M}_{s}(\tilde{P},GT),\tilde{GT})

\mathcal{L}=\sum_{i=1}^{\hat{N}_{pos}}\mathcal{L}_{pos}(\tilde{D}_{i},\tilde{G}_{i})+\sum_{j=1}^{\tilde{N}_{neg}}\mathcal{L}_{neg}(\tilde{D}_{j},y_{j})

2.4.1. Dynamic Prior

2.4.2. Coarse Prior Matching

2.4.3. Finer Dynamic Posterior Matching

2.5.  Experiments

2.5.1. Datasets

2.5.2. Implementation Details

2.5.3. Main Results

(1)Results on DOTA series

(2)Results on DIOR-R

(3)Results on HBB Datasets

2.5.4. Ablation Study

(1)Effects of Individual Strategy

(2)Comparisons of Different CPS.

(3)Fixed Prior and Dynamic Prior

(4)Detailed Design in PCB

(5)Effects of Parameters

2.6. Analysis

(1)Reconciliation of imbalance problems

(2)Visualization

(3)Speed

2.7. Conclusion

3. 知识补充

4. Reference List

Xu, C. et al. (2023) 'Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection', CVPR. doi: https://doi.org/10.48550/arXiv.2304.08876

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/742970.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

支付模块-基于消息队列发送支付通知消息

消息队列发送支付通知消息 需求分析 订单服务作为通用服务,在订单支付成功后需要将支付结果异步通知给其他对接的微服务,微服务收到支付结果根据订单的类型去更新自己的业务数据 技术方案 使用消息队列进行异步通知需要保证消息的可靠性即生产端将消息…

深入了解 大语言模型(LLM)微调方法

引言 众所周知,大语言模型(LLM)正在飞速发展,各行业都有了自己的大模型。其中,大模型微调技术在此过程中起到了非常关键的作用,它提升了模型的生成效率和适应性,使其能够在多样化的应用场景中发挥更大的价值。 那么&…

服务器命令

服务器命令 服务器命令top查看任务 服务器命令 top查看任务 、ps 命令 ps 命令是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行和它所运行的状态、进程是否结束、进程有没有僵死、哪些进程占用了过多的资源等。总之大部分信息都是可以通过执行…

pytorch模型转onnx格式,编写符号函数实现torch算子接口和onnx算子的映射,新建简单算子--模型部署记录整理

对于深度学习模型来说,模型部署指让训练好的模型在特定环境中运行的过程。相比于软件部署,模型部署会面临更多的难题: 运行模型所需的环境难以配置。深度学习模型通常是由一些框架编写,比如 PyTorch、TensorFlow。由于框架规模、依…

掌握Go语言:深入encoding/gob包的高效数据序列化

掌握Go语言:深入encoding/gob包的高效数据序列化 引言理解Gob和它的使用场景Gob的概念和设计目标Gob的适用场景和优势 开始使用Gob基本的Gob编码和解码示例代码编码(序列化)解码(反序列化) Gob编码高级应用自定义类型的…

【Java语言】遍历List元素时删除集合中的元素

目录 前言 实现方式 1.普通实现 1.1 使用【for循环】 方式 1.2 使用【迭代器】方式 2.jdk1.8新增功能实现 2.1 使用【lambda表达式】方式 2.2 使用【stream流】方式 注意事项 1. 使用【for循环】 方式 2. 不能使用增强for遍历修改元素 总结 前言 分享几种从List中移…

基于 K8s 容器集群的容灾架构与方案

作者:庄宇 在设计系统架构时,我们必须假设任何组件和任何基础设施可能会在任何时间失效,例如:自然灾害,电力中断,网络中断,错误的系统变更等。为了应对挑战,我们必须设计合适的容灾…

在centos8中部署Tomcat和Jenkins

参考链接:tomcat安装和部署jenkins_jenkins和tomcat-CSDN博客 1、进入centos中 /usr/local 目录文件下 [rootlocalhost webapps]# cd /usr/local2、使用通过wget命令下下载tomcat或者直接在官网下载centos版本的包后移动到centos中的local路径下 3、下载tomcat按…

VUE3内置组件Transition的学习使用

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 更多nbcio-boot功能请看演示系统RuoYi-Nbcio亿事达企业管理平台 gitee源代码地址 后端代码:…

详解Postman使用

简介: 1.简介 PostMan,一款接口调试工具。 特点: 可以保留接口请求的历史记录 可以使用测试集Collections有效管理组织接口 可以在团队之间同步接口数据 1.简介 PostMan,一款接口调试工具。 特点: 可以保留接口请求…

从0到1入门C++编程——12 演讲比赛流程管理系统

文章目录 一、创建类并显示菜单二、退出管理系统三、开始演讲比赛四、查看往届记录五、清空比赛记录六、案例源代码 演讲比赛流程管理系统 比赛规则:演讲比赛共有12个人参加,比赛分两轮进行,第一轮为淘汰赛,第二轮为决赛。每名选手…

HTML万字学习总结

html文本标签特殊符号图片音频与视频超链接表单列表表格语义标签(布局) html文本标签 标签简介根目录规定文档相关的配置信息&#xff08;元数据元素表示文档的内容表示那些不能由其它 HTML 元相关元素&#xff08;(<base>、<link>, <script>、<style>…

今日AI:GPT-4.5意外曝光可能6月发布、UP主借AI识别情绪播放量186万、全球首个AI程序员诞生

欢迎来到【今日AI】栏目!这里是你每天探索人工智能世界的指南&#xff0c;每天我们为你呈现AI领域的热点内容&#xff0c;聚焦开发者&#xff0c;助你洞悉技术趋势、了解创新AI产品应用。 新鲜AI产品点击了解:AIbase - 智能匹配最适合您的AI产品和网站 &#x1f4e2;一分钟速…

如何拆解技术瓶颈的难点

以大化小的思路 解决一个一个小问题从而解决最终问题 三段论&#xff1a; 抽象能力 职责领域划分 分层构建解决方案 案例&#xff1a;全局分布式事务的解决方案 抽象能力&#xff1a;全局分布式 是由一个个小的事务组合而成的&#xff0c;其中一个分布式事务出现问题&#xff…

探索考古文字场景,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建文本考古场景下的甲骨文字符图像检测识别系统

甲骨文是一种非常历史悠久的古老文字&#xff0c;在前面我们基本上很少有涉及这块的内容&#xff0c;最近正好在做文字相关的项目开发研究&#xff0c;就想着基于甲骨文的场景来开发对应的检测识别系统&#xff0c;在前文中我们基于YOLOv5、YOLOv7和YOLOv9开发构建了在仿真数据…

激活函数Mish

paper&#xff1a;Mish: A Self Regularized Non-Monotonic Activation Function official implementation&#xff1a;https://github.com/digantamisra98/Mish 背景 在早期文献中&#xff0c;Sigmoid和TanH激活函数被广泛使用&#xff0c;随后在深度神经网络中失效。相比于…

Springboot的配置文件及其优先级

配置文件 内置配置文件 配置文件的作用&#xff1a;修改SpringBoot自动配置的默认值&#xff1b;SpringBoot在底层都给我们自动配置好&#xff1b;SpringBoot使用一个全局的配置文件&#xff0c;配置文件名是固定的&#xff1a; application.propertiesapplication.yml 以上…

网络建设与运维培训介绍和能力介绍

1.开过的发票 3.培训获奖的证书 4合同签署 5.实训设备

[ThinkPHP]Arr返回1

$detailId (int)Arr::get($detail, null); var_dump($detailId); 打印结果&#xff1a;int(1) 原因&#xff1a; vendor/topthink/think-helper/src/helper/Arr.php

干洗店管理系统洗鞋店预约上门小程序洗护流程;

干洗店洗鞋店收银管理系统&#xfe63;智能线上预约洗衣店小程序软件; 闪站侠洗衣洗鞋店收银管理系统&#xff0c;一款集进销存、收衣、收银、会员管理等实用功能于一体的洗护管理软件&#xff0c;适用于各大中小型企业个体工商户&#xff0c;功能强大&#xff0c;操作简单&…