论文网址:[2304.08876] 用于定向微小目标检测的动态粗到细学习 (arxiv.org)
论文代码:https://github.com/ChaselTsui/mmrotate-dcfl
英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用
1. 省流版
1.1. 心得
(1)为什么学脑科学的我要看这个啊?愿世界上没有黑工
(2)最开始写小标题的时候就发现了,分得好细啊,好感度++
1.2. 论文总结图
2. 论文逐段精读
2.1. Abstract
①Extreme geometric shapes (tiny) and finite features (few pixels) of tiny rotating objects will cause serious mismatch (inaccurate positional prior?) and imbalance (inaccurate positive sample features?) issues
②They proposed dynamic prior and coarse-to-fine assigner, called DCFL
posterior adj.在后部的;在后面的 n.臀部;屁股
2.2. Introduction
①Oriented bounding box greatly eliminates redundant background area, especially in aerial images
②Comparison figure:
where M* denotes matching function;
green, blue and red boxes are true positive, false positive, and false negative predictions respectively,
the left figure set is static and the right is dynamic
③Figure of mismatch and imbalance issues:
each point in the left figure denotes a prior location(先验打那么多个点啊...而且为啥打得那么整齐,这是什么one-shot吗)
饼状图是说当每个框都是某个角度的时候吗?当每个框都不旋转的时候阳性样本平均数量是5.2?还是说饼状图的意思是自由旋转,某个特定角度的框的阳性样本是多少多少?这个饼状图并没有横向比较诶,只有这张图自己内部比较。
柱状图是锚框大小不同下平均阳性
④They introduce dynamic Prior Capturing Block (PCB) as their prior method. Based on this, they further utilize Cross-FPN-layer Coarse Positive Sample (CPS) to assign labels. After that, they reorder these candidates by prediction (posterior), and present gt by finer Dynamic Gaussian Mixture Model (DGMM)
eradicate vt.根除;消灭;杜绝 n.根除者;褪色灵
2.3. Related Work
2.3.1. Oriented Object Detection
(1)Prior for Oriented Objects
(2)Label Assignment
2.3.2. Tiny Object Detection
(1)Multi-scale Learning
(2)Label Assignment
(3)Context Information
(4)Feature Enhancement
2.4. Method
(1)Overview
①For a set of dense prior , where denotes width, denotes height and denotes the number of shape information(什么东西啊,是那些点吗), mapping it to by Deep Neural Network (DNN):
where represents the detection head(探测头...外行不太懂,感觉也就是一个函数嘛?);
one part in denotes the classification scores, where means the class number(更被认为是阳性的样本那层的里的数据会更大吗);
one part in denotes the classification scores, where means the box parameter number(什么东西?box parameter?什么是箱参数?)
②In static methods, the pos labels assigned for is
③In dynamic methods, the pos labels set integrate posterior information:
④The loss function:
where and represent the number of positive and negative samples, is the neg labels set
⑤Modelling , and :
2.4.1. Dynamic Prior
2.4.2. Coarse Prior Matching
2.4.3. Finer Dynamic Posterior Matching
2.5. Experiments
2.5.1. Datasets
2.5.2. Implementation Details
2.5.3. Main Results
(1)Results on DOTA series
(2)Results on DIOR-R
(3)Results on HBB Datasets
2.5.4. Ablation Study
(1)Effects of Individual Strategy
(2)Comparisons of Different CPS.
(3)Fixed Prior and Dynamic Prior
(4)Detailed Design in PCB
(5)Effects of Parameters
2.6. Analysis
(1)Reconciliation of imbalance problems
(2)Visualization
(3)Speed
2.7. Conclusion
3. 知识补充
4. Reference List
Xu, C. et al. (2023) 'Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection', CVPR. doi: https://doi.org/10.48550/arXiv.2304.08876