OPENCV(0-1之0.2)

OPENCV-0.2

  • 学习安排
  • 图像基础
    • 像素
      • 访问和修改像素值
    • 色彩空间转换
      • RGB到灰度的转换
      • RGB到HSV的转换
  • 图像操作
    • 裁剪
    • 缩放
    • 旋转和翻转
  • 图像滤波
    • 平滑和模糊图像
    • 边缘检测
  • 图像变换
    • 仿射变换
    • 透视变换
  • 总结

官方文档

学习安排

  1. 图像基础
  1. 像素:了解像素的概念,包括像素值的意义(如RGB颜色空间中的R、G、B值),以及如何访问和修改图像的像素值。
  2. 色彩空间转换:学习如何在不同的色彩空间之间转换图像,例如从RGB转换到灰度、HSV(色调、饱和度、亮度)等。这对于图像处理的很多应用都是基础,例如在特定色彩空间中更容易地进行颜色检测和跟踪。
  1. 图像操作
  1. 图像裁剪:学习如何裁剪图像的特定区域。这在需要关注图像的某一部分时非常有用。
  2. 缩放:了解如何改变图像的尺寸,包括使用不同的插值方法来优化缩放的效果。
  3. 旋转和翻转:学习如何对图像进行旋转和翻转操作,这对于图像校正或增强用户体验很有帮助。
  1. 图像滤波
  1. 平滑和模糊图像:掌握使用不同类型的滤波器(如均值滤波、高斯滤波等)来平滑或模糊图像,这对于去噪或降低图像的细节级别很有用。
  2. 边缘检测算法:学习使用如Canny边缘检测器来识别图像中的边缘。边缘检测是许多图像处理任务(如图像分割、物体检测等)的重要步骤。
  1. 图像变换
  1. 仿射变换:了解如何使用仿射变换来进行图像的平移、缩放、旋转以及倾斜校正。
  2. 透视变换:学习透视变换的原理和应用,如何利用透视变换进行图像的矫正和视角变换,这在进行图像分析和增强现实应用中非常重要。

图像基础

像素

像素,或称图像元素,是构成数字图像的基本单位。每个像素包含了该点的颜色信息,对于彩色图像来说,通常使用RGB色彩模型,其中R、G、B分别代表红色、绿色和蓝色通道的强度值。在计算机中,这些值通常范围从0到255。

访问和修改像素值

代码

import cv2image = cv2.imread('../image.jpg')
# 访问坐标为(0, 0)的像素值
pixel_value = image[0, 0]
print(pixel_value)  # 对于彩色图像,这将打印出[B, G, R]值# 修改坐标为(0, 0)的像素值
image[0, 0] = [255, 255, 255]  # 将此像素修改为白色
print(image[0, 0])

结果
在这里插入图片描述

色彩空间转换

色彩空间是一种用来表示、组织和创建颜色的方法。除了常见的RGB色彩空间外,还有很多其他色彩空间,如HSV(Hue, Saturation, Value/色调、饱和度、亮度)、LAB等。不同的色彩空间对于某些图像处理任务更为适合。

RGB到灰度的转换

代码

import cv2image = cv2.imread('../image.jpg')gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)cv2.imshow('Original Image', image)
cv2.imshow('Grayscale Image', gray_image)
cv2.waitKey(0)  # 等待按键
cv2.destroyAllWindows()  # 关闭窗口

结果
在这里插入图片描述

RGB到HSV的转换

代码

import cv2image = cv2.imread('../image.jpg')hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)cv2.imshow('Original Image', image)
cv2.imshow('Hsv Image', hsv_image)
cv2.waitKey(0)  # 等待按键
cv2.destroyAllWindows()  # 关闭窗口

结果
在这里插入图片描述

图像操作

裁剪

是指从原图中选择一个感兴趣的区域(ROI,Region of Interest)并提取出来。
通过数组切片的方式来裁剪图像。

代码

import cv2# 加载图像
image = cv2.imread('../image.jpg')# 裁剪图像
# 假设我们想裁剪坐标在 x1:x2 和 y1:y2 的区域
x1, y1, x2, y2 = 100, 100, 300, 300
cropped_image = image[y1:y2, x1:x2]
cv2.imshow('Original Image', image)
# 显示裁剪后的图像
cv2.imshow('Cropped Image', cropped_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果
在这里插入图片描述

缩放

是改变图像尺寸的过程。

代码

import cv2# 加载图像
image = cv2.imread('../image.jpg')
cv2.imshow('Original Image', image)# 将图像缩放到指定的新尺寸
new_width, new_height = 200, 200
INTER_LINEAR_image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_LINEAR)
INTER_NEAREST_image = cv2.resize(image, (new_width * 2, new_height * 2), interpolation=cv2.INTER_NEAREST)
INTER_AREA_image = cv2.resize(image, (new_width // 2, new_height // 2), interpolation=cv2.INTER_AREA)
INTER_CUBIC_image = cv2.resize(image, (new_width * 3, new_height * 3), interpolation=cv2.INTER_CUBIC)# 显示缩放后的图像
cv2.imshow('INTER_LINEAR', INTER_LINEAR_image)
cv2.imshow('INTER_NEAREST', INTER_NEAREST_image)
cv2.imshow('INTER_AREA', INTER_AREA_image)
cv2.imshow('INTER_CUBIC', INTER_CUBIC_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果
在这里插入图片描述

其中:

常用的插值方法包括:

  1. cv2.INTER_LINEAR:线性插值,适合缩放
  2. cv2.INTER_NEAREST:最近邻插值,速度最快
  3. cv2.INTER_AREA:使用像素区域关系,适合缩小图像
  4. cv2.INTER_CUBIC:三次样条插值,适合放大图像

旋转和翻转

旋转是将图像围绕其中心点旋转给定角度的过程.
翻转是沿水平或垂直轴反转图像。

代码

import cv2# 加载图像
image = cv2.imread('../image.jpg')
cv2.imshow('Original Image', image)
# 旋转图像
center = (image.shape[1] // 2, image.shape[0] // 2)  # 图像中心点
angle = 90  # 旋转角度
scale = 1.0  # 缩放比例
rotation_matrix = cv2.getRotationMatrix2D(center, angle, scale)
rotated_image = cv2.warpAffine(image, rotation_matrix, (image.shape[1], image.shape[0]))# 翻转图像
flipped_image = cv2.flip(image, 1)  # 1表示水平翻转,0表示垂直翻转# 显示旋转和翻转后的图像
cv2.imshow('Rotated Image', rotated_image)
# cv2.waitKey(0)
# cv2.destroyAllWindows()cv2.imshow('Flipped Image', flipped_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果
在这里插入图片描述

图像滤波

平滑和模糊图像

图像的平滑和模糊处理通常用于去除噪声或降低图像的细节。
可以通过各种低通滤波器(LPF)来实现,低通滤波器有助于去除图像中的高频内容(如边缘、噪声等)

代码

import cv2# 加载图像
image = cv2.imread('../image.jpg')
cv2.imshow('Original Image', image)
blur = cv2.blur(image, (5, 5))  # 使用5x5的核进行均值滤波
gaussian_blur = cv2.GaussianBlur(image, (5, 5), 0)  # 5x5高斯核,标准差由函数自动计算
median_blur = cv2.medianBlur(image, 5)  # 核大小为5cv2.imshow('blur', blur)
cv2.imshow('gaussian_blur', gaussian_blur)
cv2.imshow('median_blur', median_blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果
在这里插入图片描述

边缘检测

边缘检测是图像处理中用于识别图像中对象边界的技术。它主要依赖于检测图像亮度的突变,这些突变通常对应于图像中的边缘。

代码

import cv2# 加载图像
image = cv2.imread('../image.jpg')
cv2.imshow('Original Image', image)
# Sobel算子:在水平和垂直方向上检测边缘
sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5)  # 水平方向
sobely = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=5)  # 垂直方向
sobel_combined = cv2.addWeighted(cv2.convertScaleAbs(sobelx), 0.5, cv2.convertScaleAbs(sobely), 0.5, 0)  # 合并
# Canny边缘检测:Canny算法是一种流行的边缘检测算法,因为它是自适应的,且效果较好。
edges = cv2.Canny(image, 100, 200)  # 最小阈值100,最大阈值200cv2.imshow('Sobelx', sobelx)
cv2.imshow('Sobely', sobely)
cv2.imshow('sobel_combined', sobel_combined)
cv2.imshow('edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果

在这里插入图片描述

图像变换

仿射变换

仿射变换(Affine Transformation)是一种二维图像变换,它包括旋转、缩放、平移和倾斜等变换。仿射变换的特点是直线在变换后仍然是直线,平行线仍然保持平行,但圆形可能变为椭圆。

代码

import cv2
import numpy as np# 加载图像
image = cv2.imread('../image.jpg')
cv2.imshow('Original Image', image)
rows, cols, ch = image.shape# 原图中的三个点及其在输出图像中的目标位置
pts1 = np.float32([[50, 50], [200, 50], [50, 200]])
pts2 = np.float32([[10, 100], [200, 50], [100, 250]])# 生成仿射变换矩阵并应用它
M = cv2.getAffineTransform(pts1, pts2)
dst = cv2.warpAffine(image, M, (cols, rows))cv2.imshow('Affine Transformation', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果
在这里插入图片描述

透视变换

透视变换(Perspective Transformation)允许图像进行更复杂的变形,比如从一个视角到另一个视角的变换,可以用来模拟相机视角的改变,例如实现全景图的拼接。在透视变换中,需要指定图像上的四个点及其对应在输出图像中的位置。

代码

import cv2
import numpy as np# 加载图像
image = cv2.imread('../image.jpg')
cv2.imshow('Original Image', image)
rows, cols, ch = image.shape# 假设pts1是图像上的四个点,pts2是变换后的目标位置
pts1 = np.float32([[56, 65], [368, 52], [28, 387], [389, 390]])
pts2 = np.float32([[0, 0], [300, 0], [0, 300], [300, 300]])# 生成透视变换矩阵并应用它
M = cv2.getPerspectiveTransform(pts1, pts2)
dst = cv2.warpPerspective(image, M, (300, 300))cv2.imshow('Perspective Transformation', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果
在这里插入图片描述

总结

在本次图像处理基础学习阶段,深入了解像素和色彩空间转换的概念,包括如何在RGB、灰度和HSV等色彩空间之间转换图像。图像的基本操作技巧,如裁剪、缩放、旋转和翻转,这些操作是图像处理中不可或缺的部分。此外,我通过均值滤波、高斯滤波和中值滤波等方法对图像进行平滑和模糊处理,以及利用Sobel算子和Canny算法进行边缘检测,这些滤波和边缘检测技术对于去除噪声和提取图像特征极为重要。最后,仿射变换和透视变换,这两种图像变换技术能够进行更复杂的图像形变和视角变换。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/742901.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux发展史目录结构Vim编辑器

Linux入门 一、Linux的发展史二、Linux的目录结构2.1 Linux系统中一切皆文件2.2 Linux中几个重要的目录 三、VIM编辑器3.1 用户名主机名 /xxx的含义3.2 一般模式3.3 编辑模式和指令模式3.4 三种模式之间的转换 一、Linux的发展史 上面俩兄弟用C语言写出了Unix操作系统(右边那个…

F5是什么意思?从BIG-IP Next核心价值了解F5

在日益变化的威胁环境中,企业必须配备兼具强大适应性和自动化特性的应用安全解决方案,这些解决方案不仅要易于使用,同时还需要具备全面的安全防御能力。当我们将目光聚焦于安全领域相关的产品,可以发现F5推出的产品不仅直观易用&a…

yolov5模型压缩-torch_pruning

参考论文:DepGraph: Towards Any Structural Pruning(https://arxiv.org/abs/2301.12900) 主要原理:物理的移除参数,并自动找出层与层以及层之间的依赖,完成模型的自动裁剪 模型压缩效果:yolov5剪枝流程如下: pip install torch_pruning 新建prune.py: import torch_…

Java项目:50 ssm010基于ssm的新能源汽车在线租赁管理系统+vue

作者主页:舒克日记 简介:Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 管理员;首页、个人中心、用户管理,站点管理员管理、汽车信息管理,借车信息管理,我的收藏管理、系统管理…

走进网络世界 了解一些基础知识

走进网络 1.认识计算机 1.计算机网络是由计算机和通讯构成的,网络研究的是“通信”。 ------1946 世界上第一台计算机 2.终端:只有输入和输出功能,没有计算和处理功能。3.数据:一串数字(二进制数)&#x…

cesiumlab中shp转3dtiles白模效果一

安装cesiumlab 如果没有安装cesiumlab,去官网下载安装一个即可 http://www.cesiumlab.com/cesiumlab.html 效果 步骤 1、准备shp面数据 2、打开cesiumlab软件转换 选择shp面数据 设置高度,如果shp面中有高度字段,可以用高度字段&#xff…

基于Springboot的集团门户网站(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的集团门户网站(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构&…

基于FPGA的图像锐化算法(USM)设计

免费获取源码请关注微信号《FPGA学习笔记册》! 1.图像锐化算法说明 图像锐化算法在实际的图像处理应用很广泛,例如:医学成像、工业检测和军事领域等;它的作用就是将模糊的图像变的更加清晰。常用的图像锐化算法有拉普拉斯算子、s…

linux上MySQL的安装

(1)解压安装包 tar -xzvf mysql-5.7.33-linux-glibc2.12-x86_64.tar.gz mv mysql-5.7.33-linux-glibc2.12-x86_64 /usr/local/mysql(2)创建数据目录 [roothecs-161929 3306]# mkdir -p /data/mysql/3306/data [roothecs-161929 3306]# mkdir -p /data/mysql/3306/binlog [roo…

科研学习|论文解读——一种修正评分偏差并精细聚类中心的协同过滤推荐算法

知网链接 一种修正评分偏差并精细聚类中心的协同过滤推荐算法 - 中国知网 (cnki.net) 摘要 协同过滤作为国内外学者普遍关注的推荐算法之一,受评分失真和数据稀疏等问题影响,算法推荐效果不尽如人意。为解决上述问题,本文提出了一种改进的聚类…

Docker单机下的容器网络管理

Docker容器网络管理 容器网络类型 Docker安装以后,会在我们的主机上创建三个网络 docker network ls可以看到有bridge、host和none三种网络类型 我们先把ubuntu的网络环境配置一下 docker run -it ubuntu apt update apt install net-tools iputils-ping curl这…

HTML静态网页成品作业(HTML+CSS)——家乡广州介绍设计制作(5个页面)

🎉不定期分享源码,关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 🏷️本套采用HTMLCSS,未使用Javacsript代码,共有5个页面。 二、作品演示 三、代…

Android Bundle putBinder传输超过1MB数据,Kotlin

Android Bundle putBinder传输超过1MB数据,Kotlin 由于Android系统架构的设计,Activity/Fragment之间通过Intent在Bundle塞进数据进行传输时候,如果数据超过1MB,会抛JE: java.lang.RuntimeException: android.os.Tran…

IDEA中配置完Maven后 重启就恢复默认设置

目录 问题描述解决方案-修改other settingsother settings改完也不奏效参考这里 问题描述 在IDEA的settings里配置完Maven之后 每次重启或新建一个项目/窗口之后 又恢复成之前的默认配置 解决方案-修改other settings 这和IDEA的版本有关 目前我使用的版本(2020.3.4) 配置完重…

计算机网络期末98+冲刺笔记

一、计算机网络基础 1.1计算机网络的概述 计算机网络的定义:利用通信设备和线路,将地理位置不同的具有独立功能的多台计算机机器外部设备连接起来,在网络操作系统、网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息…

cpp qt 一个奇怪的bug

今天在用cpp qt的时候发现了一个奇怪的东西 这是我的源代码 #include "mywidget.h" #include <QPushButton>myWidget::myWidget(QWidget *parent): QWidget(parent) {QPushButton * btn1 new QPushButton;btn1->show();btn1->setParent(this);btn1-&g…

如何恢复丢失未保存的 Word 文档指南

在广阔的数字领域&#xff0c;对丢失未保存的 Word 文档的恐惧对于用户来说是再熟悉不过的焦虑了。本指南旨在对用户可能发现自己迫切需要恢复未保存文档的各种场景进行详尽的探索。无论是由于保存失败、意外的系统崩溃还是令人心碎的意外删除&#xff0c;请放心&#xff0c;我…

详解MySQL的MVCC(ReadView部分解析C++源码)

文章目录 1. 什么是MVCC2. MVCC核心组成&#xff08;三大件&#xff09;2.1 MVCC为什么需要三大件 3. 隐藏字段4. undo log4.1 模拟版本链数据形成过程 5. Read View5.1 m_ids5.2 m_creator_trx_id5.3 m_low_limit_id5.4 m_up_limit_id5.5 可见性分析算法 6. MVCC流程模拟6.1 R…

ChromeDriver 122 版本为例 国内下载地址及安装教程

ChromeDriver 国内下载地址 https://chromedriver.com/download 靠谱 千千万万别下载错了 先确认 Chrome 浏览器版本 以 win64 版本为例 那我们下载这一个啊&#xff0c;不要下载错了 下载地址贴在这哈 https://storage.googleapis.com/chrome-for-testing-public/122.0.…

低代码开发平台,快速搭建开源MES系统

MS低代码云MES作为一家专注于提供生产制造数字化方案的服务商&#xff0c;“以客户为中心”、以“数据驱动、智能化、互联化”为企业的核心标签&#xff0c;以低代码平台为切入点&#xff0c;帮助企业构建以人为本的未来供应链生态系统&#xff0c;实现制造企业的智能化转型。 …