概率与常见的概率分布

        概率是数据分析、机器学习中最基础的知识。也是在生活中最实用的一门学科,学了很多大道理不一定能过好一生,学好概率则有一定概率会变得更好。为大概率坚持,为小概率备份。

概率与分布

    要想了解概率,首先得搞清楚概率和概率分布的问题

1.概率是什么?

    定义:概率反映的是一个事件发生可能性的大小。概率将“可能性”量化了。

2.概率分布是什么?

    定义:用于表述随机变量取值的概率规律。简而言之就是随机变量分布的规律。

3.概率与分布有什么关系?

    概率和分布之间存在密切关系。概率是分布的具体取值,而分布是对随机变量在不同取值上的概率进行建模。这两者相辅相成,共同构建了对不确定性的数学描述。

    例如:下图是一个正态分布,红点是表示在这个分布中,为x的概率,黄色的区域表示在这个分布中x属于这个黄色区域内的概率

图片

常见的概率分布

    在搞清楚概率分布之前我们还得先了解随机变量

什么是随机变量?

    定义:表示随机试验各种结果的实值单值函数。是不是很晕,比文言文还难懂,其实简单的理解:随着随机试验的结果变化而变化的变量,叫做随机变量

    比如抛骰子实验,观察点数,设抛出的点数结果为X,则X有6种可能的结果,而且每次出现的点数,都是随机性的,那么这样的变量叫做随机变量。

    随机变量分为离散型随机变量与非离散型随机变量两种。

离散型:变量的取值个数是有限的,可数的。

    例如抛硬币,有正反两种可能;抛骰子有6中可能等,都是可数的。

非离散型:变量的取值个数无限,取值范围为全体实数。非离散型中可以分为连续性(绝大部分)和混合型

例如:长度、速度、重量、体积、温度、力量等。这些都有无限个值,无法列举。

发现没有,这些变量都是一种度量

离散概率分布

伯努利分布(Bernoulli Distribution)

    伯努利分布是描述只有两个可能结果的随机试验,如硬币的正反面。

如果投一枚硬币,正面为1,反面为0。概率质量函数为 P(x=1) =p, P(x=0)=1-p

二项分布(Binomial Distribution)

    描述多次独立伯努利试验的概率。也就是说在n次试验中正好得到k次成功的概率。

如果逆向看伯努利分布就是n=1的二项分布。

那么实验了n次,有k次成功,就意味着有n-k次失败。

成功的概率为p,失败的概率为1-p

注意这里是不管实验结果的顺序的,不论是第几次成功或失败都没影响,只管最终成功和失败的次数,就很自然的使用了排列组合里面的组合C。

二项分布的概率公式则描述为

图片

多项分布(Multinomial Distribution)

    是二项分布的推广,二项分布描述的是实验结果只有两种的分布。多项分布则是描述实验结果有多种可能的分布。例如骰子的6种可能。

某随机实验如果有k个可能结果A1、A2、…、Ak,分别将他们的出现次数记为随机变量X1、X2、…、Xk,它们的概率分布分别是p1,p2,…,pk,那么在n次采样的总结果中,A1出现n1次、A2出现n2次、…、Ak出现nk次的这种事件的出现概率P有下面公式:

图片

连续概率分布

正态分布(Normal Distribution)

    又称为高斯分布(Gaussian distribution),是统计学中最常见的一种分布,正态分布曲线两头低,中间高,左右对称,因图形像大钟,因此又称为钟形曲线。

图片

正态分布的密度函数

式中μ为均值;σ是标准差;π为圆周率≈3.1415926;e为自然常数≈2.71828

这个公式中主要关注均值 μ 和标准差 σ,均值 μ 决定分布度的偏度

图片

均值 μ决定了曲线横轴的位置,μ增大曲线向横轴右移;μ减小曲线向横轴左移。

图片

标准差σ决定曲线的宽度和高度,σ越大,曲线越宽越平坦(矮胖),表明数据越分散,反之亦然。

指数分布(Exponential Distribution)
 

    用于描述独立随机时间发生的时间间隔或间隔事件的概率分布,在可靠性分析和排队论中比较常见,其中在排队论中指数分布常用于描述服务时间。例如等待公交车进站的时间间隔。

图片

指数分布密度函数

图片

指数分布图

均匀分布(Uniform Distribution)

    均匀分布在区间内所有取值的概率都相等,因为图形是一个矩形,所以也叫矩形分布,均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值。密度函数非常简单 f(x) = 1/ (b-a)

图片

泊松分布(Poisson distribution)

    主要用于估计在特定时间段或空间中某事件发生的次数,例如一小时内到达店里的人数。满足以下两个性质,则水机变量服从泊松分布

  1.  在任意两个相等长度的区间上,事件发生的概率相等。

  2. 事件在某一区间上是否发生与事件在其他区间上是否发生是相互独立的。

    图片

k表示事件在一个区间发生k次的概率;λ表示事件在一个区间发生次数的数学期望或均值;其中λ越大越接近于正态分布,当λ=50时,可以认为泊松分布呈现正态分布了。

图片

而且泊松分布是由二项分布推导而来,当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,二项分布就可以用泊松公式近似的计算。

除此之外还有一些正态分布相关的分布

例如:

卡方分布(Chi-Square Distribution)用于描述多个相互独立标准正态分布的随机变量的平方和,有几个数就是服从自由度为几的卡方分布,自由度越大,越接近于正态分布。

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/740653.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣L9--- 12. 整数转罗马数字--2024年3月12日

1.题目 2.知识点 &#xff08;1&#xff09;HaspMap的一些基本语法 1&#xff09;创建 HashMap&#xff0c;用于存储键为 String 类型、值为 Integer 类型的键值对。 HashMap<String, Integer> map new HashMap<>();2&#xff09;添加键值对&#xff1a; map.p…

DAY14二叉树迭代遍历

二叉树前序迭代法遍历 前序遍历是中左右&#xff0c;每次先处理的是中间节点&#xff0c;那么先将根节点放入栈中&#xff0c;然后将右孩子加入栈&#xff0c;再加入左孩子。 为什么要先加入 右孩子&#xff0c;再加入左孩子呢&#xff1f; 因为这样出栈的时候才是中左右的顺…

刷题日记——01字符串、非素数个数(厦门大学机试)

题目1——01字符串 分析 经过拆解找规律&#xff0c;发现是两个斐波那契 那么代码就好写了呀 #include <stdio.h>unsigned long long f(int n){if(n0||n1){return n;}return (f(n-1)f(n-2))%2333333; }int main(){int n;scanf("%d",&n);printf("%…

2.Datax数据同步之Windows下,mysql和sqlserver之间的自定义sql文数据同步

目录 前言步骤操作大纲步骤明细mysql 至 sqlServersqlServer 至 mysql执行同步语句中报 前言 上一篇文章实现了不同的mysql数据库之间的数据同步&#xff0c;在此基础上本篇将实现mysql和sqlserver之间的自定义sql文数据同步 准备工作&#xff1a; JDK(1.8以上&#xff0c;推…

亲测抖音小程序备案流程,抖音小程序如何备案,抖音小程序备案所需准备资料

抖音小程序为什么要备案&#xff0c;抖音官方给出如下说明&#xff1a; 1、2024年3月15日后提交备案的小程序将不保证2024年3月31日前平台可初审通过&#xff1b; 2、2024年3月31日后未完成备案小程序将被下架处理。 一&#xff0c;备案前需准备资料 &#xff08;一&#xff0…

BUUCTF-----[SWPU2019]Web1

打开页面&#xff0c;原本以为是二次注入,结果不是&#xff0c;先注册一个账户 在申请发布广告中&#xff0c;发现反射性xss(然而没有什么用) 在广告申请名字中发现注入点 开始注入 通过一系列的测试&#xff0c;发现系统过滤了#&#xff0c;or&#xff0c;空格 orde…

《Fallacies of Distributed Systems》原文手译

Fallacies of Distributed Systems 分布式系统的谬误 Fallacies of distributed systems are a set of assertions made by L Peter Deutsch and others at Sun Microsystems describing false assumptions that programmers new to distributed applications invariably mak…

操作系统--LRU算法,手撕

今天研究一下LRU算法&#xff0c;上学期学数据结构的时候就应该学一下这个算法&#xff0c;不过后面操作系统也会讲到LRU算法 题目 LRU缓存leetocde146 LRU&#xff08;Least Recently Used&#xff0c;最近最少使用&#xff09;算法是一种常见的缓存替换算法&#xff0c;通…

windows系统图标变白设置

我们在使用系统的时候&#xff0c;通常会在桌面创建图标&#xff0c;有时候桌面图标过多&#xff0c;整理图标放在新建文件夹的时候&#xff0c;图标变白&#xff0c;通常情况下都是缓存问题&#xff0c;这里也是删除缓存解决演示系统&#xff1a;windows11 1显示图标缓存目录 …

保护数字前沿:有效的威胁暴露管理

人工智能技术正在从根本上改变网络安全领域的方向。仅 2023 年&#xff0c;全球企业预计将在人工智能上花费 1027.8 亿美元&#xff0c;以阻止网络安全威胁。 人工智能 (AI)在增强网络安全措施方面发挥着关键作用&#xff0c;因为它能够快速分析大量数据并识别可能表明潜在威胁…

Unity 显示MeshRenderer的渲染层级

Unity 显示MeshRenderer的渲染层级 前言源码MeshRendererInspectorSkinnedMeshRendererInspector 参考 前言 Mesh Renderer和Skinned Mesh Renderer组件默认不显示Order&#xff0c;找了个工具显示一下。 源码 下面两个代码放入Editor文件夹中 MeshRendererInspector Me…

C++Qt学习——不用UI文件编程

在创建文件的时候不要选中Generate form这块 创建的文件如下图所示&#xff0c;比起之前的没有了form这一快 1、在mainwindow.h里面声明按钮对象 2、在mainwindow.cpp里实例化按钮 2.1、方法一 pushButton new QPushButton();pushButton->show(); 但是发现显示是分离的 2…

【spring】-多模块构建二-问题整理

1、bean注入问题 The injection point has the following annotations: - org.springframework.beans.factory.annotation.Autowired(requiredtrue) 解决1&#xff1a; 由于引入的bean类 不属于启动类的子模块下&#xff0c;需要在启动类手动声明扫描的类 也适用于公共子模…

【图文详解】Maven Helper插件解决Maven冲突

文章目录 插件问题解决过程 在面试中解决问题的能力和思路是考察的重点&#xff0c;面试官问会问我们有没有解决过maven冲突。以下造了一个maven冲突&#xff0c;手把手教学如何解决Maven冲突。 插件 插件在idea插件中搜索Maven Helper 问题 解决过程 根据上面日志知道是log…

2024 遗传编程实战(一)基因实战

2024 遗传编程实战&#xff08;一&#xff09;基因实战 文章目录 2024 遗传编程实战&#xff08;一&#xff09;基因实战一、遗传编程实战介绍1、遗传编程简介2、遗传编程和进化论的关系3、遗传编程过程解释 二、基于遗传编程的例子1、实战题目介绍2、遗传算法的伪代码3、遗传实…

微信小程序开发系列(三十)·小程序本地存储API·同步和异步的区别

目录 1. 同步API 1.1 getStorageSync存储API 1.2 removeStorageSync获取数据API 1.3 removeStorageSync删除 1.4 clearStorageSync清空 2. 异步API 2.1 setStorage存储API 2.2 getStorage获取数据API 2.3 removeStorage删除API 2.4 clearStorage清空 3. …

Zookeeper搭建

目录 前言 初了解Zookeeper 搭建 准备 配置Zookeeper 前言 今天来介绍Zookeeper的搭建&#xff0c;其实Zookeeper的搭建很简单&#xff0c;但是为什么还要单独整一节呢&#xff0c;这就不得不先了解Zookeeper有什么功能了&#xff01;而且现在很火的框架也离不开Zookeepe…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的夜间车辆检测系统(深度学习代码+UI界面+训练数据集)

摘要&#xff1a;开发夜间车辆检测系统对于自动驾驶技术具有关键作用。本篇博客详细介绍了如何运用深度学习构建一个夜间车辆检测系统&#xff0c;并提供了完整的实现代码。该系统基于强大的YOLOv8算法&#xff0c;并对比了YOLOv7、YOLOv6、YOLOv5&#xff0c;展示了不同模型间…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的木材表面缺陷检测系统(深度学习+Python代码+UI界面+训练数据集)

摘要&#xff1a;开发高效的木材表面缺陷检测系统对于提升木材加工行业的质量控制和生产效率至关重要。本篇博客详细介绍了如何运用深度学习技术构建一个木材表面缺陷检测系统&#xff0c;并提供了完整的实现代码。该系统采用了强大的YOLOv8算法&#xff0c;并对YOLOv7、YOLOv6…

VUE_nuxt启动只能通过localhost访问,ip访问不到:问题解决

修改项目根目录下的 package.json "config": {"nuxt": {"host": "0.0.0.0","port": "3000"} } 这样项目启动后就可以通过ip进行访问了