基于python+Django深度学习的音乐推荐方法研究系统设计与实现

摘 要
数字化时代带动着整个社会的信息化发展,随着数字媒体的不断发展,现在通多媒体数字产品的内容越来越丰富,传播影响力越来越强,以音乐为例,现在的音乐文化多样、音乐资源也异常的丰富,在这种大数据的环境下,人们要想找到想要的音乐类型、找到心里所想的那首音乐无疑是大海捞针。现在音乐的推荐系统也非常的多,但是推荐的内容、推荐的方式却与用户的感知差距明显,或多或少都会存在一些问题。而随着深度学习、卷积神经网络的不断发展,现在的深度学习在图像识别、自然语言等领域都有着很好的发展,也很好的应用在了音乐的推荐过程中。
本次的研究是基于使用自动编码器,通过与卷积神经网络相结合,以挖掘音频、歌词本身的非线性特征,来实现很好的音乐推荐、音乐查找识别的功能实现,并将内容特征与协同过滤共同作用,训练紧耦合模型。通过此次的系统搭建与开发,能够通过深度学习的方式让系统可以实现按照用于的喜好来进行音乐的推荐的功能实现。
关 键 词:深度学习;音乐推荐;Python;KNNBaseline

ABSTRACT
The digital era is driving the information development of the whole society. With the continuous development of digital media, the content of multimedia digital products is becoming more and more rich, and the communication influence is becoming stronger and stronger. Take music as an example. Today’s music culture is diverse, and the music resources are also unusually rich. In this big data environment, it is undoubtedly a needle in a haystack if people want to find the type of music they want and the music they want. Now there are many music recommendation systems, but the content and way of recommendation are obviously different from the user’s perception, and there are more or less problems.
This research is based on the use of automatic encoder, combined with convolutional neural network, to mine the non-linear characteristics of audio and lyrics, to achieve good music recommendation, music search and recognition functions, and to train a tightly coupled model by combining content features with collaborative filtering. Through this system construction and development, the system can realize the function of music recommendation according to the preferences of the users through in-depth learning.
Key words: deep learning; Music recommendation; Python; KNNBaseline

目 录
摘 要 I
ABSTRACT II
1、绪论 5
1.1研究背景 5
1.2研究现状 5
1.3研究的内容 6
1.4开发的技术介绍 6
1.4.1Python技术 6
1.4.2MySQL数据库 7
1.4.3B/S结构 7
1.5论文的结构 7
2深度学习的算法研究 8
2.1卷积神经网络介绍 8
2.1.1卷积神经网络特性 8
2.1.2卷积的方式 8
2.2基本内容推荐算法 8
2.3基于协同过滤的推荐算法 9
2.4深度学习技术相关概念 10
2.5深度学习技术推荐算法 10
2.6KNNBaseline算法 11
3基于深度学习的音乐推荐系统算法需求 12
3.1需求设计 12
3.2可行性分析 12
3.2.1技术可行性 12
3.2.2经济可行性 12
3.2.3操作可行性 12
3.3其他功能需求分析 13
4系统设计 14
4.1系统的整体设计 14
4.2数据库的设计 14
5系统的实现 16
5.1系统的首页 16
5.2音乐播放界面的实现 16
5.3音乐推荐功能的实现 17
5.4后台管理系统的实现 18
6系统的测试 19
6.1测试的目的 19
6.2测试的内容 19
6.3测试的结果 19
结论 20
参考文献 21
致谢 22

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/73828.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学会用命令行创建uni-app项目并用vscode开放项目

(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹) 目录 创建 uni-app 项目 命令行创建 uni-app 项目 编译和运行 uni-app 项目: 用 VS Code 开发 uni…

Elasticsearch踩坑:启动时 报错 java.nio.file.NoSuchFileException \lib\dt.jar

原因: ES 8.0.x版本对应jdk17以上,jdk17等高版本的jdk在配置环境变量时无需配置 CLASSPATH 解决: 1.将 /etc/profile 中的CLASSPATH的环境变量删除 2.配置立即生效source /etc/profile 3.重启ES

教你如何快速阅读葡萄酒标签

我们经常被问及葡萄酒标签上写了什么,总体而言这些信息可以分为四个关键部分,第一品牌或生产商;第二国家或地区;第三葡萄品种;第四年份。 第一品牌或生产商,在寻找葡萄酒的制造商时,著名的品牌名…

Vuex -mutations 传参修改仓库数据

文章目录 mutations 修改仓库数据一、mutations的基本修改二、mutations 传参修改数据1、 在触发事件的时候传递参数2、 提供事件方法,接收使用参数3、mutations方法接受使用参数传递参数注意事项: 三、综合代码(练习、复习)store…

一篇文章教会你什么是高度平衡二叉搜索(AVL)树

高度平衡二叉搜索树 AVL树的概念1.操作2.删除3.搜索4.实现描述 AVL树的实现1.AVL树节点的定义2.AVL树的插入3.AVL树的旋转3.1 新节点插入较高右子树的右侧---右右:左单旋3.2 新节点插入较高左子树的左侧---左左:右单旋3.3 新节点插入较高左子树的右侧---左右:先左单…

尖端AR技术如何在美国革新外科手术实践?

AR智能眼镜已成为一种革新性的工具,在外科领域具有无穷的优势和无限的机遇。Vuzix与众多医疗创新企业建立了长期合作关系,如Pixee Medical、Medacta、Ohana One、Rods & Cones、Proximie等。这些公司一致认为Vuzix智能眼镜可有效提升手术实践&#x…

计算机网络的故事——了解Web及网络基础

了解Web及网络基础 文章目录 了解Web及网络基础一、使用 HTTP 协议访问 Web二、HTTP 的诞生三、网络基础 TCP/IP四、与 HTTP 关系密切的协议 : IP、TCP 和 DNS 一、使用 HTTP 协议访问 Web 根据Web浏览器指定的URL,从对应的服务器中获取文件资源,从而显…

Java压缩文件为ZIP并加密

当您需要将文件加密并保存为ZIP文件时,可以使用net.lingala.zip4j库来实现。 步骤1:准备工作 首先,确保您已经包含了net.lingala.zip4j库,并将其添加到您的Java项目中。您可以通过Maven或Gradle等构建工具来添加这个库。仓库地址…

深度学习-4-二维目标检测-YOLOv5理论模型详解

YOLOv5理论模型详解 1.Yolov5四种网络模型 Yolov5官方代码中,给出的目标检测网络中一共有4个版本,分别是Yolov5s、Yolov5m、Yolov5l、Yolov5x四个模型。 YOLOv5系列的四个模型(YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x)在参数量和性…

手写Ribbon基本原理

本文已收录于专栏 《中间件合集》 目录 概念说明什么是RibbonRibbon和Nginx负载均衡的区别 工作流程代码实现RibbonSDK发送请求端引入RibbonSDK和Nacos的依赖配置文件中填写负载均衡策略调用代码 接收请求端执行效果发送请求端接收请求端 总结提升 概念说明 什么是Ribbon Ribb…

序列号读取

1.序列号读取 1.1 应用示例目的与思路 获取光盘的外接圆;然后进行极坐标变换,获取字符所在的区域;最后进行字符分割、识别及其在原图上显示。 1.2 应用示例相关算子介绍 (1) mean_image(Image : ImageMean : MaskWidth, MaskHeight : ) …

19 | spark 统计 每列的数据非缺失值

计算CSV文件中每列的数据覆盖率(非缺失值的百分比)时,您可以使用提供的Java代码来完成这项任务。以下是更详细的步骤: 1. 导入所需库和设置Spark配置 首先,您需要导入所需的Java库,并设置Spark的配置。这些库包括Apache Spark的Java库以及用于数据处理和格式化的其他Ja…

SQL语法

通用语法及分类 DDL: 数据定义语言,用来定义数据库对象(数据库、表、字段)DML: 数据操作语言,用来对数据库表中的数据进行增删改DQL: 数据查询语言,用来查询数据库中表的记录DCL: 数据控制语言,用来创建数…

uniapp 手机 真机测试 ​ 云打包 要是没申请 可以使用云打包 然后采用 测试权限即可​

uniapp 手机 真机测试 打开手机 找到手机的 版本号 点击 知道提示 (启动开发者模式) 然后 在进行usb的连接打开 运行uniapp 到手机基台 手机确认 即可 四, 云打包 要是没申请 可以使用云打包 然后采用 测试权限即可

每日刷题|回溯法解决全排列问题第二弹之解决字符串、字母大小排列问题

食用指南:本文为作者刷题中认为有必要记录的题目 前置知识:回溯法经典问题之全排列 ♈️今日夜电波:带我去找夜生活—告五人 0:49 ━━━━━━️💟──────── 4:59 …

2023国赛数学建模C题思路代码 - 蔬菜类商品的自动定价与补货决策

# 1 赛题 在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差, 大部分品种如当日未售出,隔日就无法再售。因此, 商超通常会根据各商品的历史销售和需 求情况每天进行补货。 由于商超销售的蔬菜…

Vue3笔记

setup Vue3.0中一个新的配置项,值为一个函数。组件中所用到的:数据、方法等等,均要配置在setup中。setup函数的两种返回值: 若返回一个对象,则对象中的属性、方法,在模板中均可以直接使用。(重…

QUIC协议科普导入(一)

一:QUIC协议导入 QUIC是一个通用的传输层网络协议,最初由Google的Jim Roskind设计,2012年实现并部署,2013年随着实验范围的扩大而公开发布,并向IETF描述。虽然长期处于互联网草案阶段,但在从Chrome浏览器到…

软件层面缓存基本概念与分类

缓存 缓存基本概念(百度百科) 缓存(cache),原始意义是指访问速度比一般随机存取存储器(RAM)快的一种高速存储器,通常它不像系统主存那样使用DRAM技术,而使用昂贵但较快…

vue3中通过ref获取子组件实例,取值为undefined

也就是Vue3如何通过 ref 获取子组件实例(子组件中的DOM结构、数据、及方法),今天写index.vue(父组件)时想获取子组件的数据和方法,通过给子组件绑定ref,打印子组件的数据为undefined;百度搜索常用方法为: …