OpenCV(六)——对于图片的算术运行、图片的叠加操作、多通道图像拆分为多个单通道图像

在OpenCV中,可以对于图片进行算法运算。我们知道,图像的本质其实就是矩阵,因此对于图像的算数运算本质上就是对于矩阵的算术运算。在OpenCV可以对图像进行算术运算的操作有加、减、乘、除等操作。

图像的加、减、乘、除操作

两张图像可以进行算术运算操作,即对两图像的矩阵进行加减操作。例如,文件夹中有两张图片:

现在想把这两张图像加起来,首先先获取两张图片的行数和列数:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg1=cv2.imread(r'D:\Photo\1.jpeg')
img2=cv2.imread(r'D:\Photo\2.jpeg')
print(img1.shape)
print(img2.shape)

运行结果如下所示:

(500, 500, 3)
(500, 667, 3)

 可以看到两张图片的行数相等,但是列数第二张图片的列数较大,因此在如果两个图像要进行算术运算操作,需要行数和列数需要保持一致,因此只能将图像截取。

(1)将上面两张图片进行相加操作:

import cv2
import matplotlib.pyplot as plt
import numpy as npimage_dog=cv2.imread(r'D:\Photo\1.jpeg')
image_cat=cv2.imread(r'D:\Photo\2.jpeg')
image_cat=cv2.resize(image_cat,(500,500))
image_new=image_cat+image_dog
cv2.imshow('image_new',image_new)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

可以看到,图片的所运行出来的结果就是每一个像素进行叠加,运行出来的结果为上图所示。

(2)同样,也可以进行相减的操作,只需要将上面代码中的image_new=image_cat-image_dog即可。即为:

image_new=image_cat-image_dog

运行结果如下所示:

(3)同样,也可以进行相乘的操作,只需要将上面代码中的image_new=image_cat*image_dog即可。

image_new=image_cat*image_dog

运行结果如下所示:

由于相乘结果数值相差较大,因此所得到的结果比较混乱。 

(4)图像的算数操作同样可以对数进行操作,例如将图像所对应的矩阵里的数全部除以2,代码为:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg_dog=cv2.imread(r'D:\Photo\1.jpeg')
res=img_dog//2
plt.imshow(res)

运行结果为:

通过图片可以看出图片整体变暗了,原因是图片对应的矩阵的值变为原来的一半。 

图片的叠加

(1)图片不可以这样简单地进行算数运算,同时也可以进行叠加(即为图像的加权融合),在OpenCV使用cv2.addWeigthed()进行叠加。在cv2.addWeighted()中,至少需要输入四个参数,即为第一个需要加权融合的图片,第一个图片所占的权重,第二个需要加权融合的图片,第二个图片所占的权重,例如:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg_dog=cv2.imread(r'D:\Photo\1.jpeg')
img_cat=cv2.imread(r'D:\Photo\2.jpeg')
img_cat=cv2.resize(img_cat,(500,500))
res=cv2.addWeighted(img_cat,0.5,img_dog,0.5,0)
plt.imshow(res)

运行效果如下所示:

(2)此时两张图片的权重各占0.5,如果修改权重,将image_cat改为0.7,image_dog改为0.3,那么只需修改代码:

res=cv2.addWeighted(img_cat,0.7,img_dog,0.3,0)

运行效果为:

可以看到,当image_cat为0.7,image_dog为0.3的时候,可以看到猫的图片占据了主导地位。

(3)需要说明的是,图片的叠加可以用图片的算术操作完成,例如加权融合的权重为0.5时,下面两句代码效果等效:

res=cv2.addWeighted(img_1,0.5,img_2,0.5,0)
res=img_1//2+img_1//2

用上面的例子进行验证:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg_dog=cv2.imread(r'D:\Photo\1.jpeg')
img_cat=cv2.imread(r'D:\Photo\2.jpeg')
img_cat=cv2.resize(img_cat,(500,500))
res1=cv2.addWeighted(img_cat,0.5,img_dog,0.5,0)
res2=img_cat//2+img_dog//2
cv2.imshow('res1',res1)
cv2.imshow('res2',res2)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行效果如下所示:

可以看到完全相同,所以对图片进行融合的时候两种方法都可以。

多通道图像拆分为多个单通道图像

在OpenCV中利用cv2.split()将多个颜色通道图像(例如BGR格式的彩色图像)拆分为多个单独的灰色图像,每个灰度图像代表原图像的一个颜色通道。

注:split()函数需要完成三个任务:

  • 通道分离:它可以将一个三通道的BGR图像分离成三个单通道的灰度图像,分别是蓝色、绿色和红色通道。
  • 数据结构:split()函数可以接受两种类型的输出参数,一种是Mat数组,另一种是std::vector<Mat>。在Python中,通常使用numpy数组来接收分离后的通道。
  • 使用方式:当你有一个Mat对象表示的图像时,可以调用split()函数并传入该对象以及一个用于存放结果的数组或向量。这样,原图像的每个通道就会被提取出来并存储在指定的位置。

例如:

import cv2
import matplotlib.pyplot as plt
import numpy as np#颜色通道提取
img=cv2.imread(r'D:\Photo\1.jpeg')
b,g,r=cv2.split(img)
print('b通道\n')
print(b)
print('g通道\n')
print(g)
print('r通道\n')
print(r)

 运行结果为:

b通道[[186 186 186 ...  30  41  34][186 186 186 ...  39  46  36][186 186 186 ...  39  41  29]...[160 161 165 ...  37  59 101][160 161 163 ...  42  39  62][154 155 157 ...  62  40  52]]
g通道[[118 118 118 ...  51  61  54][118 118 118 ...  59  66  56][118 118 118 ...  59  61  49]...[177 178 181 ...  73  95 137][177 178 180 ...  76  72  96][171 172 173 ...  96  74  85]]
r通道[[ 70  70  70 ...  45  55  48][ 70  70  70 ...  53  60  51][ 70  70  70 ...  53  55  44]...[188 189 192 ...  81 103 145][188 189 191 ...  84  81 104][182 183 184 ... 104  82  93]]

通过上面结果可以看到一张RGB图像分成了三个通道,每个通道有不同的数据内容。而不同颜色通道的图片是什么样子的呢?下面我们分别展示B、G、R通道:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg=cv2.imread(r'D:\Photo\1.jpeg')
#只保留R通道
cur_img1=img.copy()
cur_img1[:,:,0]=0
cur_img1[:,:,1]=0
#只保留G通道
cur_img2=img.copy()
cur_img2[:,:,0]=0
cur_img2[:,:,2]=0
#只保留B通道
cur_img3=img.copy()
cur_img3[:,:,1]=0
cur_img3[:,:,2]=0
cv2.imshow('R通道',cur_img1)
cv2.imshow('G通道',cur_img2)
cv2.imshow('B通道',cur_img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

上面通道所展示的结果是B通道、G通道、R通道所呈现的内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/735899.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序开发系列(二十六)·小程序运行机制(启动、前后台状态、挂起、销毁)和小程序更新机制

目录 1. 小程序运行机制 1.1 启动 1.2 前台和后台状态 1.3 挂起 1.4 销毁 2. 小程序更新机制 1. 小程序运行机制 1.1 启动 小程序启动可以分为两种情况&#xff0c;一种是冷启动&#xff0c;一种是热启动。 冷启动&#xff1a;如果用户首次打开&#xff0c;或小…

数据挖掘案例分析、经典案例、技术实现方案

1.数据挖掘案例分析 数据挖掘&#xff1a;是从大量数据中发现有用信息和模式的过程。 数据挖掘案例分析&#xff1a;是指通过对已有数据进行挖掘和分析&#xff0c;发现其中的模式和规律&#xff0c;并根据这些发现提出相应的解决方案和决策建议的过程。 以下是一些常见的数据…

03-快速上手RabbitMQ的5种消息模型

RabbitMQ RabbitMQ是基于Erlang语言开发的开源消息通信中间件,有几个常见概念 connections(连接): 将来publisher(消息的发送者)或者consumer(消息的接收者)都需要先与MQ建立连接 channel(通道): 建立连接后需要创建通道,生产者和消费者就是基于通道完成消息的发送和接收 ex…

_note_06

1.说一说函数的按地址传递和按值传递&#xff0c;他们的区别是什么&#xff1f; 函数的参数传递方式可以分为按地址传递&#xff08;也称为按引用传递&#xff09;和按值传递两种方式。按值传递是指将实际参数的值复制给形式参数&#xff0c;即在函数调用时&#xff0c;实际参数…

探索云原生数据库技术:构建高效可靠的云原生应用

数据库是应用开发中非常重要的组成部分&#xff0c;可以进行数据的存储和管理。随着企业业务向数字化、在线化和智能化的演进过程中&#xff0c;面对指数级递增的海量存储需求和挑战以及业务带来的更多的热点事件、突发流量的挑战&#xff0c;传统的数据库已经很难满足和响应快…

2023年终总结——跌跌撞撞不断修正

目录 一、回顾1.一月&#xff0c;鼓足信心的开始2.二月&#xff0c;焦躁不安3.三月&#xff0c;路还是要一步一步的走4.四月&#xff0c;平平淡淡的前行5.五月&#xff0c;轰轰烈烈的前行6.六月&#xff0c;看事情更底层透彻了7.七月&#xff0c;设计模式升华月8.八月&#xff…

04hive数仓内外部表复杂数据类型与分区分桶

hive内部表和外部表 默认为内部表&#xff0c;外部表的关键字 &#xff1a;external内部表&#xff1a;对应的文件夹就在默认路径下 /user/hive/warehouse/库名.db/外部表&#xff1a;数据文件在哪里都行&#xff0c;无须移动数据 # students.txt 1,Lucy,girl,23 2,Tom,boy,2…

Kafka的分区机制

Kafka的分区机制是其核心功能之一&#xff0c;旨在提高可扩展性和并行处理能力。下面概述了Kafka分区的基本概念和工作原理&#xff1a; Kafka分区基本概念 分区&#xff08;Partition&#xff09;&#xff1a;Kafka中的主题&#xff08;Topic&#xff09;可以细分为多个分区…

政安晨:【深度学习处理实践】(五)—— 初识RNN-循环神经网络

RNN&#xff08;循环神经网络&#xff09;是一种在深度学习中常用的神经网络结构&#xff0c;用于处理序列数据。与传统的前馈神经网络不同&#xff0c;RNN通过引入循环连接在网络中保留了历史信息。 RNN中的每个神经元都有一个隐藏状态&#xff0c;它会根据当前输入和前一个时…

Java EE之wait和notify

一.多线程的执行顺序 由于多个线程执行是抢占式执行&#xff0c;就会导致顺序不同&#xff0c;同时就会导致出现问题&#xff0c;就比如俩个线程同时对同一个变量进行修改&#xff0c;我们难以预知执行顺序。 但在实际开发中&#xff0c;我们希望代码按一定的逻辑顺序执行&am…

计算机视觉——P2PNet基于点估计的人群计数原理与C++模型推理

简介 人群计数是计算机视觉领域的一个核心任务&#xff0c;旨在估算静止图像或视频帧中的行人数量。在过去几十年中&#xff0c;研究人员在这个领域投入了大量的精力&#xff0c;并在提高现有主流基准数据集性能方面取得了显著进展。然而&#xff0c;训练卷积神经网络需要大规…

matlab阶段学习笔记小节2

syms定义符号变量 求极限 第二题 第三题 limit(y,n,inf);求的的函数y关于自变量n在无穷处&#xff08;inf&#xff09;的极限 exp(2)即指数为2&#xff0c;底为e,也就是e^2 求导数 第一题 log(x)默认是以e为底的指数函数&#xff0c;也就是ln(x). 使用diff(f)对函数进行求…

算法-双指针、BFS与图论-1113. 红与黑

题目 思路 本题相当于问BFS中的当前点所在的区域连通块有多少个 Flood Fill算法 &#xff08;可参考以下链接&#xff1a;洪水覆盖算法(Flood Fill)&#xff1a;颜色填充-CSDN博客&#xff09;本题用DFS实现Flood Fill算法DFS是否需要恢复现场&#xff1a;&#xff08;重要&am…

新IDEA电脑环境设置

1.设置UTF-8 2.Maven 3.JRE选对

【漏洞复现】华三用户自助服务产品dynamiccontent.properties.xhtml接口处存在RCE漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

VUE+HBuilder的uniapp技术路线开发应用使用总结

使用总结 本来想做一个记录日常数据的应用&#xff0c;主要在Android端使用&#xff0c;后来发现在uniapp中使用sqllite数据库不是像原生中那样简单(所以当前准备去进行另一个路线&#xff0c;就是给我使用的电脑都安装一个portalble的服务端&#xff0c;用来记录数据&#xf…

java中使用rabbitmq

文章目录 前言一、引入和配置1.引入2.配置 二、使用1.队列2.发布/订阅2.1 fanout(广播)2.2 direct(Routing/路由)2.3 Topics(主题)2.4 Headers 总结 前言 mq常用于业务解耦、流量削峰和异步通信,rabbitmq是使用范围较广,比较稳定的一款开源产品,接下来我们使用springboot的sta…

角蜥优化算法 (Horned Lizard Optimization Algorithm ,HLOA)求解无人机路径优化

一、无人机路径规划模型介绍 无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行时间和节省能量消耗。 二、算法介…

数据结构:图及相关算法讲解

图 1.图的基本概念2. 图的存储结构2.1邻接矩阵2.2邻接表2.3两种实现的比较 3.图的遍历3.1 图的广度优先遍历3.2 图的深度优先遍历 4.最小生成树4.1 Kruskal算法4.2 Prim算法4.3 两个算法比较 5.最短路径5.1两个抽象存储5.2单源最短路径--Dijkstra算法5.3单源最短路径--Bellman-…

Dataset 读取数据

Dataset 读取数据 from torch.utils.data import Dataset from PIL import Image import osclass Mydata(Dataset):def __init__(self,root_dir,label_dir):self.root_dir root_dir #根目录 dataset/trainself.label_dir label_dir #标签的后面链接目录 ants_ima…