【数据结构】详解时间复杂度和空间复杂度的计算

一、时间复杂度(执行的次数)

1.1时间复杂度的概念

1.2时间复杂度的表示方法

1.3算法复杂度的几种情况

1.4简单时间复杂度的计算

例一

例二

例三

1.5复杂时间复杂度的计算 

例一:未优化冒泡排序时间复杂度

例二:经过优化的冒泡排序

例三:二分查找的时间复杂度

例四:阶乘递归的时间复杂度

例五:斐波那契递归(二叉树)的时间复杂度

1.6不同时间复杂度效率的比较

​编辑

二、空间复杂度(变量的个数)

2.1空间复杂度的概念

2.2常见空间复杂度的计算

对于递归:

前言之空间可以重复利用

例一:冒泡排序的空间复杂度(有坑)

例二:二分法空间复杂度的计算

例三:阶乘递归的空间复杂度

例四:斐波那契递归的空间复杂度(难点)并不是O(2^N)

三、重难点知识回顾与总结 


一、时间复杂度(执行的次数)

1.1时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。(这里的函数指的是数学中的函数,而不是我们C语言中的函数)

一个算法执行所耗费的时间,从理论上说是不能算出来的,因为只有当我们把程序放在机器上跑起来,才能知道具体时间。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

一句话概括:时间复杂度算的是执行次数,而不是具体的时间

但是需要小心误区:并不是有多少个循环次数时间复杂度就是多少,得具体分析算法逻辑

shellsort 用了三个循环 但是它的时间复杂度是O(N^1.3)

1.2时间复杂度的表示方法

我们计算时间复杂度时不是计算算法运行的具体次数,而是用大O的渐进表示法来计算,其具体计算方法如下:

  • 用常数1取代运行时间中的所有加法常数。eg:O(100)->O(1)
  • 在修改后的运行次数函数中,只保留最高阶项。eg:O(N^2+N)->O(N^2)
  • 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。O(2N^2)->O(N^2)

 

1.3算法复杂度的几种情况

  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

但是需要注意的是:

 

 在实际中一般情况关注的是算法的最坏运行情况

1.4简单时间复杂度的计算

例一

void Func(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{++count;
}
printf("%d\n", count);
}

O(100)-> O(1) 


 

例二

void Func1(int N)
{int count = 0;for (int i = 0; i < N; ++i){for (int j = 0; j < N; ++j){++count;}}for (int k = 0; k < 2 * N; ++k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

上面程序具体执行的次数:N * N + 2*N + 10

用大O的渐进表示法得出时间复杂度:O(N^2) (只保留最高阶项)


 

例三

void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{++count;
}
int M = 10;
while (M--)
{++count;
}
printf("%d\n", count);
}

 上面程序具体执行的次数:2*N + 10

用大O的渐进表示法得出时间复杂度:O(N) (如果最高阶项存在且不是1,则去除与这个项目相乘的常数

1.5复杂时间复杂度的计算 

例一:未优化冒泡排序时间复杂度

void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}}
}

 

分析可知: 

 

所以本质上是一个等差数列

刚开始一共有N个数,所以需要比较N-1次 第二次需要比较 N-2 次

 所以(N-1)+(N-2)+(N-3)+...+3+2+1= (N^2-N)/2

用大O的渐进表示法得出时间复杂度:O(N^2)

 但是这是未经过优化的冒泡排序,不管原先数组是否有序,都要经过全部遍历


 

例二:经过优化的冒泡排序

void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0){break;}}
}

多了一个exchange变量,这个变量的好处是: 

对于已经有序的数组,不再会进行排序

当exchange为0时,表示在当前一轮的比较中没有发生任何元素交换,这意味着待排序的数组已经是有序的状态。这种情况下,BubbleSort算法可以提前结束,而不必再进行后续的比较操作。

举个具体的例子来说明,对于输入序列 1 2 3 5 4:

  • 在第一轮排序中,会先比较1和2,然后比较2和3,接着比较3和5,最后比较5和4,发现5和4的顺序不对,进行交换,exchange被设置为1。
  • 在第二轮排序中,会继续比较1和2,2和3,3和4。因为在这一轮中没有发生任何交换,exchange保持为0。
  • 根据exchange为0的判断,算法将会提前结束,因为在这一轮中没有发生交换,说明数组已经是有序的(除了最后的4和5位置互换),不需要再进行后续的比较和排序操作。

因此,exchange的作用在于提供了一种优化机制,可以在数组已经有序的情况下提前结束排序过程,减少不必要的比较操作,从而提高算法的效率。

那么当我们的数组有序的时候,也就是最好的情况,我们的复杂度是O(N),遍历一次发现exchange是0,停止循环

 但是我们的时间复杂度算的是悲观保守的估计,所以即使优化了,我们的时间复杂度最终的结果还是O(N^2)! 

当然这也给我们一个启示,一段代码中并不是只有一个复杂度,不同的情况有不同的复杂度


例三:二分查找的时间复杂度

最好的情况:O(1)

最坏的情况:

 

 分析最坏情况:

刚开始在N个数中找,接下来在N/2个数中找,接着在N/4数中找....

没找一次,次数+1,当我们有N个数据的时候,很容易得知我们只需要 Log₂x 就找出是否存在

 用大O的渐进表示法得出时间复杂度:O(logN) (一般省略底数)


例四:阶乘递归的时间复杂度

long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}

 

 用大O的渐进表示法得出时间复杂度:O(N)

换句话讲就是:每次调用是O(1),但是调用N次


例五:斐波那契递归(二叉树)的时间复杂度

long long Fibonacci(size_t N)
{return N < 2 ? N : Fibonacci(N - 1) + Fibonacci(N - 2);
}

可以推导出最后一层的节点数量应该是2^n-1 (因为第1层是0次方) 

那么我们的时间复杂度就转变为:2^0+2^1+...+2^n-1

我们可以用公式:

得知Sn=2^n-1

或者用错位相减法:

 

小羊表示:错位相减法yyds!!

最终可以得知 用大O的渐进表示法得出时间复杂度为:O(2^N)

说明斐波那契这个函数很挫,复杂度很高


1.6不同时间复杂度效率的比较

 我们可以看到当测试数据很大时 O(logN) 和 O(1) 的效率几乎是一样的,所以二分查找是一种效率很高的算法,但是它也有一个缺陷,那就是它操作的数组元素必须是有序的


二、空间复杂度(变量的个数)

2.1空间复杂度的概念

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,空间复杂度算的是变量的个数。 空间复杂度计算规则基本跟时间复杂度类似,也使用大O的渐进表示法。

而且我们找的变量,必须是这个程序临时占用的,额外占用的,别人给咱们的不算

谨记:时间是一去不复返的,需要累计;空间是可以重复利用的,不需要累计

2.2常见空间复杂度的计算

对于递归:

每次递归的开辟的大小 * 递归的次数

前言之空间可以重复利用

我们接下来要开始计算空间复杂度了,但是会有很多问题,所以我们先算一个程序

#include<bits/stdc++.h>
using namespace std;
void f(int n)
{int a=0;int *p=(int*)malloc(4*n);cout << &a << " " << &p << endl;
}
int main()
{f(10);f(100);return 0;
}

从结果中我们可以看出:当函数栈帧销毁之后,再次调用该函数的时候,还是用的上一次的那个空间,而不会新开辟空间 

例一:冒泡排序的空间复杂度(有坑)

void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0){break;}}
}

 这里我们在循环外部定义了两个变量,然后在循环内部又定义了一个变量;可能有的同学会认为temp变量因为在循环内部,每次进入循环都会被重新定义,所以空间复杂度为N^2,其实不是的;

我们知道虽然时间是累积的,一去不复返,但是空间是不累积的,我们可以重复使用;对于我们的temp变量来说,每次进入if这个局部范围时开辟空间,离开这个局部范围时空间销毁,下一次在进入时又重新开辟空间,出去又再次销毁;所以其实从始至终temp都只占用了一个空间;

而且还有一个误导人的就是那个数组:尽管有数组而且还有N个变量,但是这个数组是别的程序开辟好传进来的,并不是我们所开辟的,所以我们算一个数组首地址变量即可

所以exchange end i 这三个变量都是开辟了一个空间,每次销毁之后,再次在原来的地址上开辟空间

例二:二分法空间复杂度的计算

#include<bits/stdc++.h>
using namespace std;
int n,m;int j=0;
const int N = 1000010;
int a[N];
bool check(int num,int x)
{if(num < x)//在例子中 x就是3{return true;}else{return false;}
}
int binary_search(int q[],int len,int x)
{int l=-1,r=n;while(l+1 < r)//循环条件写成这样可以节约时间{int mid= (l+r) >> 1;if(check(q[mid],x)){l=mid;}else{r=mid;}}//因为存在找不到的情况if(q[r]==x)//r就是我们要的那个位置{return r+1;}else{return -1;}
}
int main()
{cin >> n >> m;for(int i=0;i<n;++i){cin >> a[i];}while(m--){int x;//这里原先x写成数组是真没有必要cin >> x;int res=binary_search(a,n,x);cout << res << " ";}return 0;
}

 对于循环的二分查找而言,空间复杂度是O(1)。

例三:阶乘递归的空间复杂度

long long Fac(int N)
{return N < 2 ? N : Factorial(N - 1) * N;
}

 

我们知道,每次函数调用开始时都会在栈区上形成自己的函数栈帧,调用结束时函数栈帧销毁;

对于上面的递归来说:只有当 N < 2 的时候函数才开始返回,而在这之前所形成的 Fac(N) Fac(N-1) Fac(N-2) … 这些函数的函数栈帧在返回之前都不会释放,而是一直存在,知道函数一步一步开始返回的时候开辟的空间才会被逐渐释放。所以在计算递归类空间复杂度度时,我们在意的是递归的深度;

这里调用的递归深度为 n - 1(递归 n - 1 次),所以空间复杂度为O(N)。

例四:斐波那契递归的空间复杂度(难点)并不是O(2^N)

long long Fibonacci(size_t N)
{return N < 2 ? N : Fibonacci(N - 1) + Fibonacci(N - 2);
}

递归的深度是N

每层是常数个

所以空间复杂度是O(N) 

斐波那契是逐个分支进行递归的,以上图为例,它会先递归6-5-4-3-2-1,再递归6-5-4-3-2,再递归6-5-4-2,以此类推,直到把最后一个分支递归完;

其次,空间是不会累积的,所以尽管我们同一个函数的函数栈帧会被开辟很多次,但是它仍然只计入一次开辟的空间复杂度

所以递归调用开递归的深度,这里的空间复杂度为O(N)

对于时间复杂度而言:左分支f(3)和 右分支f(3)是不一样的,因为只要有,就会浪费时间

但是对于空间复杂度而言:f(3)的栈帧是同一个东西,只要左分支的f(3)消失了,那么下一次建立这个变量的空间还是在同样的位置(详情可以看前言)

三、重难点知识回顾与总结 

  • 时间复杂度和空间复杂度都是用大O的渐进表示法来表示。
  • 时间复杂度看运算执行的次数,空间复杂度看变量定义的个数。
  • 在递归中,时间复杂度看调用的次数,空间复杂度看调用的深度。
  • 时间是累积的,一去不复返;空间是不累积的,可以重复利用。

  • 冒泡排序的时间复杂度为O(N^2),空间复杂度为O(1)。
  • 二分查找的时间复杂度为O(logN),空间复杂度为O(1)。
  • 阶乘递归的时间复杂度为O(N),空间复杂度为O(N)。
  • 斐波那契递归的时间复杂度为O(2^N),空间复杂度为O(N)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/734972.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【海贼王的数据航海:利用数据结构成为数据海洋的霸主】探究二叉树的奥秘

目录 1 -> 树的概念及结构 1.1 -> 树的概念 1.2 -> 树的相关概念 1.3 -> 树的表示 1.4 -> 树在实际中的运用(表示文件系统的目录树结构) 2 -> 二叉树概念及结构 2.1 -> 二叉树的概念 2.2 -> 现实中的二叉树 2.3 -> 特殊的二叉树 2.4 ->…

2024年【P气瓶充装】考试报名及P气瓶充装复审考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 P气瓶充装考试报名是安全生产模拟考试一点通总题库中生成的一套P气瓶充装复审考试&#xff0c;安全生产模拟考试一点通上P气瓶充装作业手机同步练习。2024年【P气瓶充装】考试报名及P气瓶充装复审考试 1、【多选题】《…

WIN32部分知识介绍

&#x1f308;前言&#xff1a;此篇博客是为下一篇的《贪吃蛇》的做的前戏工作&#xff0c;这篇会讲到贪吃蛇所用到的一些工具以及函数。 首先在讲WIN32的内容时我们想了解一下他的基本概念&#xff1a; Windows 这个多作业系统除了协调应⽤程序的执⾏、分配内存、管理资源之外…

vscode插件-TONGYILingma

通义灵码&#xff0c;是一款基于通义大模型的智能编码辅助工具&#xff0c;提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力&#xff0c;并针对阿里云 SDK/API 的使用场景调优&#xff0c;为开发者带来高…

react-beautiful-dnd组件报Unable to find draggable with id

一、问题现象 项目中使用react-beautiful-dnd组件实现可拖拽&#xff0c;但拖了1次后可能会出现拖拽异常&#xff08;元素拖不动&#xff09;&#xff0c;打开控制台会发现有报错 二、解决方案 给Draggable组件和其下方的div添加了key就正常了,以下是我自己简单写的一个dem…

磁盘无法访问?别慌,这里有解决之道!

电脑中&#xff0c;那块储存着重要文件与数据的磁盘&#xff0c;突然之间无法访问&#xff0c;是不是让你感到惊慌失措&#xff1f;面对这样的突发状况&#xff0c;很多人可能会感到手足无措。但别担心&#xff0c;本文将为你解析磁盘无法访问的原因&#xff0c;并提供实用的数…

期刊《Computers Security》简介

官网截图 方式 同时支持订阅和OA 范围 latest issue Volume 140 In progress (May 2024) This issue is in progress but contains articles that are final and fully citable. 本期内没有image encryption相关论文。 Volume 139 April 2024 本期内没有image encryptio…

MySQL——DQL语法 练习笔记

DQL DQL&#xff08;Data Query Language&#xff09;是SQL语言中的一种类型&#xff0c;用于执行数据查询操作。它是SQL的一部分&#xff0c;用于从数据库中检索数据。DQL语句用于从一个或多个表中选择、过滤和排序数据。常见的DQL查询语句包括SELECT、FROM、WHERE、GROUP BY…

论文学习——一种新的具有分层响应系统的动态多目标优化算法

论文题目&#xff1a;A Novel Dynamic Multiobjective Optimization Algorithm With Hierarchical Response System 一种新的具有分层响应系统的动态多目标优化算法&#xff08;Han Li , Zidong Wang , Fellow, IEEE, Chengbo Lan, Peishu Wu , and Nianyin Zeng , Member, IE…

基于Java的在线课程教学系统(Vue.js+SpringBoot)

目录 一、摘要1.1 系统介绍1.2 项目录屏 二、研究内容2.1 课程类型管理模块2.2 课程管理模块2.3 课时管理模块2.4 课程交互模块2.5 系统基础模块 三、系统设计3.1 用例设计3.2 数据库设计 四、系统展示4.1 管理后台4.2 用户网页 五、样例代码5.1 新增课程类型5.2 网站登录5.3 课…

Linux下mysql添加用户并授权数据库权限

在 Linux 下&#xff0c;你可以使用 MySQL 的 root 用户登录到 MySQL 数据库&#xff0c;然后通过 SQL 命令来添加新用户并授予数据库权限。以下是一个简单的步骤&#xff1a; 1. 用 root 用户登录到 MySQL&#xff1a; mysql -u root -p 2. 输入密码后&#xff0c;进入 MyS…

阿里云服务器多少钱1月?2024年最新版报价

阿里云服务器一个月多少钱&#xff1f;最便宜5元1个月。阿里云轻量应用服务器2核2G3M配置61元一年&#xff0c;折合5元一个月&#xff0c;2核4G服务器30元3个月&#xff0c;2核2G3M带宽服务器99元12个月&#xff0c;轻量应用服务器2核4G4M带宽165元12个月&#xff0c;4核16G服务…

【物理排序】(最小交换环 | 大体量表排序 | 泛型算法)

设想一下&#xff0c;如果待排元素不是一个简单的整数&#xff0c;而是一个庞大的结构体&#xff0c;移动元素的时间不能忽略不计。 元素需要频繁互换&#xff0c;那么移动这些元素的时间将会非常长久&#xff0c;效率很低 typedef very_large_item {int comparable;Tp very_…

vue选项式API和组合式API区别-备忘

Vue.js 的选项式API和组合式API是两种不同的编写Vue组件的方式&#xff0c;它们各自有不同的特点和适用场景&#xff1a; 选项式API (Options API) 这是 Vue.js 最初的API设计方式&#xff0c;也是最为广泛使用的编程模型。在选项式API中&#xff0c;一个Vue组件由一系列可选…

【MySQL | 第四篇】区分SQL语句的书写和执行顺序

文章目录 4.区分SQL语句的书写和执行顺序4.1书写顺序4.2执行顺序4.3总结4.4扩充&#xff1a;辨别having与where的异同&#xff1f;4.5聚合查询 4.区分SQL语句的书写和执行顺序 注意&#xff1a;SQL 语句的书写顺序与执行顺序不是一致的 4.1书写顺序 SELECT <字段名> …

点赞功能真的有必要上 Redis 吗?(Mongo、MySQL、Redis、MQ 实测性能对比)

目录 一、你会怎么设计一个点赞功能&#xff1f; 1.1、点赞实现思路 1.2、点赞功能设计 1.2.1、MySQL 单表 1.2.2、单表 MySQL 关联表 1.2.3、MySQL 关联表 mq 1.2.4、redis mq 1.2.5、mongodb 关联文档 二、性能测试 2.1、前置说明 2.2、10 万数据准备 一、你会…

kubectl基础命令详解

管理名称空间资源 查看名称空间 [rootceshi-130 conf]# kubectl get ns [rootceshi-130 conf]# kubectl get namespace NAME STATUS AGE default Active 7d17h kube-node-lease Active 7d17h kube-public Active 7d17h kube-system …

【C++】三大特性之继承

1 继承的概念及定义 1.1 继承的概念 继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段&#xff0c;它允许程序员在保持原有类特性的基础上进行扩展、增加功能&#xff0c;这样产生新的类&#xff0c;称派生类&#xff08;或子类&#xff09;。而被继承的…

Java宝典-抽象类和接口

目录 1. 抽象类1.1 抽象类的概念1.2 抽象类的语法1.3 抽象类的特点 2. 接口2.1 接口的概念2.2 接口的语法2.3 接口的特点2.4 实现多个接口2.5 接口的继承 3. 接口使用案例 铁汁们好,今天我们学习抽象类和接口~ 1. 抽象类 1.1 抽象类的概念 什么是抽象类?在面向对象中,如果一…