【大厂AI课学习笔记NO.68】开源和开源发展情况

开源即源代码公开,任何人能获取源代码,查看、修改、分发他们认为合适的代码。

依托同行评审和社区生成,旨在以分散、协作的方式开发。

我们曾经很详细的讨论过开源协议的问题,详细可以参考我的文章:

https://giszz.blog.csdn.net/article/details/134460066

【AI】马斯克说大模型要开源,我们缺的是源代码?(附一图看懂6大开源协议)

核心其实就是这张图,要考的哦!

 

MIT协议是嘴宽松的协议,损失概不负责而已,这当然,难道你用了开源框架,还要去碰瓷吗?

从发展的角度来讲:

 

美国还是开源最繁荣的地方,没有占据了三分之二的项目,另外体量比较的是中国。

目前企业、高效研究机构、组织和个人,分别占据了三分之一。

人工智能的开源项目,从2007年以后,开始推动。深度学习框架开始繁荣。

目前还是我们介绍过的人工智能机器学习框架TensorFlow使用的人最多,重复发明轮子,已经不是需要了。

如同最近老周红衣说的,人工智能的未来在行业应用,中国有最大的市场,最多的数据,人工的智能的发展,离不开中国的参与。

延伸学习:


在人工智能领域,开源框架是推动技术创新和发展的重要力量。这些框架为研究者、开发者和企业提供了构建、训练和部署机器学习模型的工具。下面将详细介绍几个著名的开源框架,包括它们的特性、应用场景和特点。

1. TensorFlow

TensorFlow最初由Google Brain团队开发,是目前应用最广泛的深度学习框架之一。它支持广泛的硬件平台,包括CPU、GPU和TPU,并提供了从高级Keras API到低级TensorFlow API的多层次接口。

特性

  • 灵活性:TensorFlow支持静态图和动态图(通过Eager Execution),使得它既适合高效生产环境,也适合快速原型开发。
  • 可扩展性:TensorFlow可以轻松地在多个硬件上高效地进行分布式训练。
  • 生态系统:TensorFlow拥有庞大的社区和丰富的生态系统,包括TensorBoard可视化工具、TensorFlow Hub模型库和TensorFlow Lite移动端部署工具。

应用场景

  • 图像识别:TensorFlow在图像分类、目标检测和图像生成等任务中表现出色。
  • 语音识别和自然语言处理:TensorFlow常用于构建语音识别系统、机器翻译和文本生成等NLP任务。
  • 强化学习:TensorFlow提供了用于构建和训练强化学习模型的工具。

特点

  • 静态图与动态图结合:TensorFlow 2.x版本结合了静态图和动态图的优点,提高了易用性和灵活性。
  • 广泛的硬件支持:TensorFlow支持多种硬件平台,使得训练和部署更加便捷。
  • 强大的生态系统:TensorFlow的生态系统提供了丰富的预训练模型和工具,加速了模型开发和部署的过程。

2. PyTorch

PyTorch是由Facebook人工智能研究院研发的开源机器学习框架。它以其动态图、易用性和高效的GPU加速功能而受到欢迎。

特性

  • 动态图:PyTorch使用动态计算图,具有高效的内存使用和灵活的调试能力。
  • 易用性:PyTorch的API简洁明了,易于学习和使用。
  • 高效GPU加速:PyTorch支持GPU加速,可以显著提高训练和推理速度。

应用场景

  • 自然语言处理:PyTorch在自然语言处理任务中表现出色,如文本分类、情感分析和机器翻译等。
  • 计算机视觉:PyTorch常用于图像识别、目标检测、图像分割和图像生成等任务。
  • 语音处理:PyTorch也适用于语音识别和语音合成等任务。

特点

  • 动态图和高效内存管理:PyTorch的动态图特性使得模型开发和调试更加直观和高效。
  • 简洁的API:PyTorch的API设计简洁明了,降低了学习门槛。
  • 活跃的社区:PyTorch拥有活跃的社区和丰富的开源项目,为开发者提供了良好的学习和交流环境。

3. Keras

Keras是一个高层神经网络API,可以运行在TensorFlow、Microsoft-CNTK或Theano之上。它以其简洁性、模块化和可扩展性而受到欢迎。

特性

  • 简洁性:Keras提供了简洁明了的API,使得模型定义和训练变得简单直观。
  • 模块化:Keras的模型是由可配置的模块组成的,这些模块可以以各种方式进行组合。
  • 可扩展性:Keras支持自定义层、损失函数和优化器等组件,方便用户进行扩展。

应用场景

  • 图像分类:Keras常用于构建和训练图像分类模型。
  • 文本处理:Keras可以处理文本数据,用于情感分析、文本分类等任务。
  • 时间序列预测:Keras也适用于时间序列数据的预测和分析。

特点

  • 易于上手:Keras的简洁性和模块化使得初学者能够快速上手。
  • 高度可定制:Keras支持自定义组件,方便用户根据需求进行定制。
  • 与TensorFlow的兼容性:Keras可以作为TensorFlow的高级API使用,享受TensorFlow的生态系统和硬件支持。

4. MXNet

MXNet是由亚马逊人工智能研究院研发的深度学习框架。它以其高效性、灵活性和可扩展性而受到关注。

特性

  • 高效性:MXNet在训练和推理速度上表现出色,特别适用于大规模数据集和分布式训练。
  • 灵活性:MXNet支持多种编程语言和平台,包括Python、C++、R和Scala等。
  • 可扩展性:MXNet支持自定义层和操作符,方便用户进行扩展和定制。

应用场景

  • 图像识别:MXNet常用于图像分类和目标检测等计算机视觉任务。
  • 自然语言处理:MXNet也适用于机器翻译、文本生成等NLP任务。
  • 自动驾驶:MXNet在自动驾驶领域也有一定的应用,如车辆检测和路径规划等。

特点

  • 混合精度训练:MXNet支持混合精度训练,可以显著提高训练速度和减少内存消耗。
  • 跨平台兼容性:MXNet支持多种编程语言和平台,使得模型开发和部署更加灵活。
  • 与AWS的集成:MXNet与亚马逊的AWS云服务紧密集成,方便用户在云上进行模型训练和部署。

总结

以上介绍了TensorFlow、PyTorch、Keras和MXNet这四个著名的开源人工智能框架。它们各有特点,适用于不同的应用场景。TensorFlow以其灵活性和可扩展性在多个领域广泛应用;PyTorch以其动态图和易用性受到研究者和开发者的喜爱;Keras以其简洁性和模块化使得初学者能够快速上手;MXNet以其高效性和跨平台兼容性在特定领域表现出色。选择合适的框架取决于具体的应用需求、硬件资源和开发者的熟悉程度。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/734200.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode-1004. 最大连续1的个数 III

每日一题系列(day 20) 前言: 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 &#x1f50…

docker部署在线聊天室平台Fiora

Fiora 是一款开源免费的在线聊天系统 https://github.com/yinxin630/fiora 部署 创建docker网络 docker network create fiora-networkdocker-compose部署 vim docker-compose.yml version: 3 services:fiora_redis:image: rediscontainer_name: fiora_redisrestart: alway…

电脑解锁后黑屏有鼠标--亲测!!不需要重装系统!!

问题:上周电脑黑屏,只有鼠标,鼠标还不能右键!! 中招:win10系统最新版火绒安全 ,那你有概率获得开机黑屏套餐一份。 原因是:火绒把我们的explorer删除了导致黑屏,这个文…

【OpenGL手册11】材质的模型

目录 一、说明二、材质表面和光照三、设置材质四、光的属性五、不同的光源颜色练习 一、说明 在现实世界里,每个物体会对光产生不同的反应。比如,钢制物体看起来通常会比陶土花瓶更闪闪发光,一个木头箱子也不会与一个钢制箱子反射同样程度的…

1分钟带你学会使用装饰器编写Python函数

1.需求 向 test() 函数中,新增一个功能,多输出一句话"给他补铁" def test():print("水中放吸铁石") # test()# 第一种方式:重写函数 def test():print("水中放吸铁石")print("给他补铁") test()# …

py脚本模拟json数据,StructuredStreaming接收数据存储HDFS一些小细节 ERROR:‘path‘ is not specified

很多初次接触到StructuredStreaming 应该会写一个这样的案例 - py脚本不断产生数据写入linux本地, 通过hdfs dfs 建目录文件来实时存储到HDFS中 1. 指定数据schema: 实时json数据 2. 数据源地址:HDFS 3. 结果落地位置: HDFS …

高级语言讲义2010软专(仅高级语言部分)

1.编写一程序&#xff0c;对输入的正整数&#xff0c;求他的约数和。 如&#xff1a;18的约数和为1236939 #include <stdio.h>int getsum(int n){int i,sum0;for(i1;i<n;i)if(n%i0)sumi;return sum; } int main(){int sum getsum(18);printf("%d",sum); …

PCB检测,基于YOLOV8NANO

PCB检测&#xff0c;基于YOLOV8NANO&#xff0c;训练得到PT模型&#xff0c;转换成ONNX&#xff0c;只需要OPENCV&#xff0c;支持C/PYTHON/ANDROID开发PCB检测&#xff0c;基于YOLOV8NANO&#xff0c;只需要OPENCV

每日一题leetcode第2834:找出美丽数组的最小和

目录 一.题目描述 二.思路及优化 三.C代码 一.题目描述 二.思路及优化 首先我们看到这个题&#xff0c;就是根据给出的数组元素个数N&#xff0c;从[1&#xff0c;N]找出N个元素&#xff0c;使得N个元素的和最小&#xff0c;其中随便抽两个数出来&#xff0c;两个数之和不能为…

BC134 蛇形矩阵

一&#xff1a;题目 二&#xff1a;思路分析 2.1 蛇形矩阵含义 首先&#xff0c;这道题我们要根据这个示例&#xff0c;找到蛇形矩阵是怎么移动的 这是&#xff0c;我们可以标记一下每次移动到方向 我们根据上图可以看出&#xff0c;蛇形矩阵一共有两种方向&#xff0c;橙色…

【Pytorch】新手入门:基于sklearn实现鸢尾花数据集的加载

【Pytorch】新手入门&#xff1a;基于sklearn实现鸢尾花数据集的加载 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448; 希望…

Hadoop运行搭建——系统配置和Hadoop的安装

Hadoop运行搭建 前言&#xff1a; 本文原文发在我自己的博客小站&#xff0c;直接复制文本过来&#xff0c;所以图片不显示(我还是太懒啦&#xff01;)想看带图版的请移步我的博客小站~ Linux镜像&#xff1a;CentOS7 系统安装&#xff1a;CentOS安装参考教程 系统网卡设置…

C语言——函数指针——函数指针变量详解

函数指针变量 函数指针变量的作用 函数指针变量是指向函数的指针&#xff0c;它可以用来存储函数的地址&#xff0c;并且可以通过该指针调用相应的函数。函数指针变量的作用主要有以下几个方面&#xff1a; 回调函数&#xff1a;函数指针变量可以作为参数传递给其他函数&…

三菱PLC基础指令

LD指令(a触点的逻辑运算开 指令表程序 0000 LD X000 0001 OUT Y000 LDI指令(b触点的逻辑运算开 指令表程序 0000 LDI X000 0001 OUT Y000 3.数据寄存器(D)的位指定*1(仅对应FX3u&#xff0c;FX3uc可编程控制器) 指令表程序 0000 LD D0.3 0001 OUT Y000 4.定时器 0000 LDI X00…

Objects类 --java学习笔记

Objects类 Objects是一个工具类&#xff0c;提供了很多操作对象的静态方法给我们使用 Objects类常用的三个方法 Objects.equals 比直接equals更安全&#xff0c;因为Objects.equals里面做了非空校验 Objects.isNull&#xff08;A&#xff09; 等价于 A null Objects.non…

Redisson学习

简介 Redisson 是一个在 Redis 的基础上实现的 Java 驻留内存数据网格&#xff08;In-Memory Data Grid&#xff09;。它提供了许多分布式 Java 对象和服务&#xff0c;包括分布式锁、分布式集合、分布式执行服务、分布式调度任务等。 使用 依赖 相关依赖&#xff0c;注意版…

【兔子机器人】修改GO电机id(软件方法、硬件方法)

一、硬件方法 利用上位机直接修改GO电机的id号&#xff1a; 打开调试助手&#xff0c;点击“调试”&#xff0c;查询电机&#xff0c;修改id号&#xff0c;即可。 但先将四个GO电机连接线拔掉&#xff0c;不然会将连接的电机一并修改。 利用24V电源给GO电机供电。 二、软件方…

回溯算法12-全排列II(Java/排列数去重操作)

12.全排列II 题目描述 给定一个可包含重复数字的序列 nums &#xff0c;按任意顺序 返回所有不重复的全排列。 示例 1&#xff1a; 输入&#xff1a;nums [1,1,2] 输出&#xff1a; [[1,1,2],[1,2,1],[2,1,1]]示例 2&#xff1a; 输入&#xff1a;nums [1,2,3] 输出&…

Spring Boot整合zxing实现二维码登录

zxing是google的一个二维码生成库&#xff0c;使用时需配置依赖&#xff1a; implementation("com.google.zxing:core:3.4.1") implementation("com.google.zxing:javase:3.4.1") zxing的基本使用 我们可以通过MultiFormatWriter().encode()方法获取一个…

AI预测福彩3D第3弹【2024年3月6日预测】

书接上回&#xff0c;经过连续两期使用人工神经网络对福彩3D进行预测&#xff0c;经过不断的调参优化&#xff0c;并及时总结规律&#xff0c;感觉还是有一定的信心提高七码的命中概率。 今天&#xff0c;咱们继续来验证&#xff0c;直接上今天的统计结果&#xff0c;首先&…