300分钟吃透分布式缓存-23讲:Redis是如何淘汰key的?

淘汰原理
首先我们来学习 Redis 的淘汰原理。

系统线上运行中,内存总是昂贵且有限的,在数据总量远大于 Redis 可用的内存总量时,为了最大限度的提升访问性能,Redis 中只能存放最新最热的有效数据。

当 key 过期后,或者 Redis 实际占用的内存超过阀值后,Redis 就会对 key 进行淘汰,删除过期的或者不活跃的 key,回收其内存,供新的 key 使用。Redis 的内存阀值是通过 maxmemory 设置的,而超过内存阀值后的淘汰策略,是通过 maxmemory-policy 设置的,具体的淘汰策略后面会进行详细介绍。Redis 会在 2 种场景下对 key 进行淘汰,第一种是在定期执行 serverCron 时,检查淘汰 key;第二种是在执行命令时,检查淘汰 key。

第一种场景,Redis 定期执行 serverCron 时,会对 DB 进行检测,清理过期 key。清理流程如下。首先轮询每个 DB,检查其 expire dict,即带过期时间的过期 key 字典,从所有带过期时间的 key 中,随机选取 20 个样本 key,检查这些 key 是否过期,如果过期则清理删除。如果 20 个样本中,超过 5 个 key 都过期,即过期比例大于 25%,就继续从该 DB 的 expire dict 过期字典中,再随机取样 20 个 key 进行过期清理,持续循环,直到选择的 20 个样本 key 中,过期的 key 数小于等于 5,当前这个 DB 则清理完毕,然后继续轮询下一个 DB。

在执行 serverCron 时,如果在某个 DB 中,过期 dict 的填充率低于 1%,则放弃对该 DB 的取样检查,因为效率太低。如果 DB 的过期 dict 中,过期 key 太多,一直持续循环回收,会占用大量主线程时间,所以 Redis 还设置了一个过期时间。这个过期时间根据 serverCron 的执行频率来计算,5.0 版本及之前采用慢循环过期策略,默认是 25ms,如果回收超过 25ms 则停止,6.0 非稳定版本采用快循环策略,过期时间为 1ms。

第二种场景,Redis 在执行命令请求时。会检查当前内存占用是否超过 maxmemory 的数值,如果超过,则按照设置的淘汰策略,进行删除淘汰 key 操作。

淘汰方式
Redis 中 key 的淘汰方式有两种,分别是同步删除淘汰和异步删除淘汰。在 serverCron 定期清理过期 key 时,如果设置了延迟过期配置 lazyfree-lazy-expire,会检查 key 对应的 value 是否为多元素的复合类型,即是否是 list 列表、set 集合、zset 有序集合和 hash 中的一种,并且 value 的元素数大于 64,则在将 key 从 DB 中 expire dict 过期字典和主 dict 中删除后,value 存放到 BIO 任务队列,由 BIO 延迟删除线程异步回收;否则,直接从 DB 的 expire dict 和主 dict 中删除,并回收 key、value 所占用的空间。在执行命令时,如果设置了 lazyfree-lazy-eviction,在淘汰 key 时,也采用前面类似的检测方法,对于元素数大于 64 的 4 种复合类型,使用 BIO 线程异步删除,否则采用同步直接删除。

淘汰策略
在这里插入图片描述
Redis 提供了 8 种淘汰策略对 key 进行管理,而且还引入基于样本的 eviction pool,来提升剔除的准确性,确保 在保持最大性能 的前提下,剔除最不活跃的 key。eviction pool 主要对 LRU、LFU,以及过期 dict ttl 内存管理策略 生效。处理流程为,当 Redis 内存占用超过阀值后,按策略从主 dict 或者带过期时间的 expire dict 中随机选择 N 个 key,N 默认是 5,计算每个 key 的 idle 值,按 idle 值从小到大的顺序插入 evictionPool 中,然后选择 idle 最大的那个 key,进行淘汰。
在这里插入图片描述
选择淘汰策略时,可以通过配置 Redis 的 maxmemory 设置最大内存,并通 maxmemory_policy 设置超过最大内存后的处理策略。如果 maxmemory 设为 0,则表明对内存使用没有任何限制,可以持续存放数据,适合作为存储,来存放数据量较小的业务。如果数据量较大,就需要估算热数据容量,设置一个适当的值,将 Redis 作为一个缓存而非存储来使用。

Redis 提供了 8 种 maxmemory_policy 淘汰策略来应对内存超过阀值的情况。

第一种淘汰策略是 noeviction,它是 Redis 的默认策略。在内存超过阀值后,Redis 不做任何清理工作,然后对所有写操作返回错误,但对读请求正常处理。noeviction 适合数据量不大的业务场景,将关键数据存入 Redis 中,将 Redis 当作 DB 来使用。

第二种淘汰策略是 volatile-lru,它对带过期时间的 key 采用最近最少访问算法来淘汰。使用这种策略,Redis 会从 redisDb 的 expire dict 过期字典中,首先随机选择 N 个 key,计算 key 的空闲时间,然后插入 evictionPool 中,最后选择空闲时间最久的 key 进行淘汰。这种策略适合的业务场景是,需要淘汰的key带有过期时间,且有冷热区分,从而可以淘汰最久没有访问的key。

第三种策略是 volatile-lfu,它对带过期时间的 key 采用最近最不经常使用的算法来淘汰。使用这种策略时,Redis 会从 redisDb 中的 expire dict 过期字典中,首先随机选择 N 个 key,然后根据其 value 的 lru 值,计算 key 在一段时间内的使用频率相对值。对于 lfu,要选择使用频率最小的 key,为了沿用 evictionPool 的 idle 概念,Redis 在计算 lfu 的 Idle 时,采用 255 减去使用频率相对值,从而确保 Idle 最大的 key 是使用次数最小的 key,计算 N 个 key 的 Idle 值后,插入 evictionPool,最后选择 Idle 最大,即使用频率最小的 key,进行淘汰。这种策略也适合大多数 key 带过期时间且有冷热区分的业务场景。

第四种策略是 volatile-ttl,它是对带过期时间的 key 中选择最早要过期的 key 进行淘汰。使用这种策略时,Redis 也会从 redisDb 的 expire dict 过期字典中,首先随机选择 N 个 key,然后用最大无符号 long 值减去 key 的过期时间来作为 Idle 值,计算 N 个 key 的 Idle 值后,插入evictionPool,最后选择 Idle 最大,即最快就要过期的 key,进行淘汰。这种策略适合,需要淘汰的key带过期时间,且有按时间冷热区分的业务场景。

第五种策略是 volatile-random,它是对带过期时间的 key 中随机选择 key 进行淘汰。使用这种策略时,Redis 从 redisDb 的 expire dict 过期字典中,随机选择一个 key,然后进行淘汰。如果需要淘汰的key有过期时间,没有明显热点,主要被随机访问,那就适合选择这种淘汰策略。

第六种策略是 allkey-lru,它是对所有 key,而非仅仅带过期时间的 key,采用最近最久没有使用的算法来淘汰。这种策略与 volatile-lru 类似,都是从随机选择的 key 中,选择最长时间没有被访问的 key 进行淘汰。区别在于,volatile-lru 是从 redisDb 中的 expire dict 过期字典中选择 key,而 allkey-lru 是从所有的 key 中选择 key。这种策略适合,需要对所有 key 进行淘汰,且数据有冷热读写区分的业务场景。
在这里插入图片描述
第七种策略是 allkeys-lfu,它也是针对所有 key 采用最近最不经常使用的算法来淘汰。这种策略与 volatile-lfu 类似,都是在随机选择的 key 中,选择访问频率最小的 key 进行淘汰。区别在于,volatile-flu从expire dict 过期字典中选择 key,而 allkeys-lfu 是从主 dict 中选择 key。这种策略适合的场景是,需要从所有的 key 中进行淘汰,但数据有冷热区分,且越热的数据访问频率越高。

最后一种策略是 allkeys-random,它是针对所有 key 进行随机算法进行淘汰。它也是从主 dict 中随机选择 key,然后进行删除回收。如果需要从所有的 key 中进行淘汰,并且 key 的访问没有明显热点,被随机访问,即可采用这种策略。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/733039.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

room数据库升级

room数据库升级 一、操作步骤说明 增加数据库版本号 在Database注解中增加版本号(version),比如从version 1升级到version 2。 Database(entities [Song::class,],**version 1**,//1->2 ) abstract class AppDataBase : RoomDatabase() { }定义数据库变化 根据…

一个爬虫自动化数据采集的故事~

目录 一、原文二、故事前半段背景内容三、正经的讲点DrissionPage知识四、故事的收尾 一、原文 原文来自一个爬虫自动化数据采集的故事~ , 建议点击链接看文章末尾的视频笔者不擅长自动化,一个小小故事分享给大家,仅个人观点 二、故事前半段背景内容 …

剑指offer面试算法题目,自己总结的

JZ31 栈的压入、弹出序列-C++-CSDN博客 剑指 Offer(C++版本)系列:从尾到头打印单链表(C++)-CSDN博客 剑指offer》15--二进制中1的个数[C++]-CSDN博客 《剑指offer》14--剪绳子(整数拆分)[C++]-CSDN博客 剑指 Offer 12. 矩阵中的路径-CSDN博客 C++--机器人的运动范围…

IP-guard邮件管控再升级,记录屏幕画面,智能阻断泄密邮件

邮件是工作沟通以及文件传输的重要工具,却也成为了信息泄露的常见渠道。员工通过邮件对外发送了什么内容,是否含有敏感信息都无从得知,机密通过邮件渠道外泄也难以制止。想要防止企业的重要信息通过邮件方式泄露,我们不仅需要通过技术措施对外发邮件的行为进行规范,也要对…

使用大带宽服务器对网站有什么好处?

近年来大带宽服务器频频出现在咱们的视野当中,选用的用户也在与日增长。那么究其主要原因是什么?租用大带宽服务器的好处又有哪些? 今天德迅云安全带您来了解下。1.有效提升网站访问速度 一般来说,正规的网站对用户体验度都是非常有讲究的,…

L-2:插松枝(Python)

作者 陈越 单位 浙江大学 人造松枝加工场的工人需要将各种尺寸的塑料松针插到松枝干上,做成大大小小的松枝。他们的工作流程(并不)是这样的: 每人手边有一只小盒子,初始状态为空。每人面前有用不完的松枝干和一个推送…

命令行中当前目录下打开资源管理器窗口

有时候使用命令行时执行命令生成了一些文件,想在资源管理器窗口中打开,或者向当前位置放入文件,以供处理。往往需要打开当前目录的资源管理器窗口,通常就是文件资源管理器,或者我的电脑一层层找到当前目录,…

手机号验证码重新发送

前文叙述 很久以前做的一个 demo ,纯 HTML 、CSS、js 制作,一定时间段之后才可以重新发送验证码,如 60s 后再次发送验证码,在该时间段内发送验证码按钮为禁用状态,实战开发过程也亦是同理,因此记录一手。 一…

内存的基本特性

初识内存 1,内存的基本特性 现代计算机的基本组成 现代计算机之父--冯诺伊曼提出了计算机的基本组成: 运算器:负责算术运算和逻辑运算,目前已经集成到CPU中。 控制器:负责控制系统的各部件,使之协调的…

【笔记】Android ServiceStateTracker 网络状态变化逻辑及SPN更新影响

业务简介 在网络状态变化的时候(数据或WiFi),会更新SPN。 基于Android U的代码分析。 分类:SPN Data_Dic-的博客-CSDN博客 功能逻辑 状态说明 飞行模式下注册上WFC的话,注册状态MD上报 regState: NOT_REG_MT_NOT…

IO进线程练习(用到了:文件IO 标准IO 多进程 exec进程转移 有名管道 无名管道)

1 利用文件IO读取文件数据存入链表,当触法ctrlc时将链表数据存入文件。 main.c #include"head.h" FILE*fp_w; linklist L; void handler(int sig){out_file(fp_w,L);printf("文件写入完成\n");exit(0); }int main(int argc, const char *argv…

一文读懂MySQL7大日志(slow、redo、undo、bin、relay、general、error)

Slow Log 简介 用于记录执行时间超过指定值的 SQL 语句的详细信息,多用于调试和监控。 配置 因为开启会略微影响性能,所以默认没有开启,所以需要配置。 查看是否开启 show variables like %slow%; ------------------------------------…

计算机找不到api-ms-win-core-path-l1-1-0的5种解决方法

在计算机使用过程中,我们可能会遇到各种问题,其中之一就是找不到某些系统文件。最近,许多用户反映他们在使用电脑时遇到了“找不到api-ms-win-core-path-l1-1-0文件”的问题。这个问题通常出现在Windows操作系统中,可能会影响到一…

Java外观模式源码剖析及使用场景

外观模式 一、介绍二、家庭影院项目案例使用三、Java API或框架中应用分析三、Spring框架ApplicationContext源码 一、介绍 外观模式(Facade Pattern)是一种结构型设计模式,它为子系统中的一组接口提供了一个统一的高层接口,使得子系统更加容易使用。外观模式定义了一个高层接…

leetcode:二叉树的左右子树反转的递归和迭代的C++实现

问题描述 给定一个二叉树,将其每个节点的左右子树进行反转。 解决方案 以下是 C 代码实现: TreeNode* invertTree(TreeNode* root) {if (root nullptr) {return nullptr;}// 交换当前节点的左右子树TreeNode* temp root->left;root->left r…

C语言转义字符:一文打尽

转义字符 1. 前言2. 预备知识2.1 打印格式2.2 进制转换2.3 ASCII码 3. 什么是转义字符4. 常见的转义字符4.1 \?4.2 \4.3 \"4.4 \\4.5 \dddddd表示1到3个八进制数字4.6 \xdddd表示1到2个十六进制数字4.7 其他转义字符 5. 一道笔试题6. 一个小插曲 1. 前言 大家好&#xf…

DFS和BFS以及练习题目(未完待续)

DFS和BFS 温馨提示:学习dfs之前最好先了解一下递归的思想。 递归思想 斐波那契 题目分析 题目代码 import java.util.Scanner; public class Main{static long dp[]; public static void main(String[] args) {Scanner scanner new Scanner(System.in);int t…

吴恩达deeplearning.ai:倾斜数据集的误差指标精确率、召回率

以下内容有任何不理解可以翻看我之前的博客哦:吴恩达deeplearning.ai专栏 文章目录 倾斜数据集的误差指标罕见病预测精确率和召回率 精确率和召回率的权衡精确率和召回率的矛盾关系 F1算法 倾斜数据集的误差指标 在神经网络中,如果你的数据集中正例和负…

CSS样式中长度单位含义解析:rpx、px、vw、vh、em、rem、pt

在 CSS 样式中,有几种常见的长度单位,包括 rpx 、 px 、 vw 和 vh 等,含义解析如下: 1 . rpx (响应像素): 是微信小程序中的一种相对长度单位,可以根据屏幕宽度进行自适应缩放。 1rp…

PTA 对于下列程序,正确的是() 。void f(int *p){ *p = 5;}int main(void){ int a, *p; a = 10;

对于下列程序,正确的是() 。 void f(int *p) {*p 5; } int main(void) {int a, *p;a 10;p &a;f(p);printf(“%d”, (*p));return 0; }A.5 B.6 C.10 D.11 答:A 解析:这里考察当是指针作为函数的参数。这里将 p …