基于YOLOv8深度学习的智能道路裂缝检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、目标分割

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~

《------正文------》

基本功能演示

在这里插入图片描述

摘要:智能道路裂缝检测与分析系统在基础设施维护和安全监测方面起着非常重要的作用。道路裂缝是道路衰老和破坏的早期迹象,若不及时发现和修复,可能会导致道路结构的进一步恶化,甚至引发安全事故。本文基于YOLOv8深度学习框架,通过4029张图片,训练了一个进行道路裂缝目标分割模型,能够高效地准确识别并分割道路中的裂缝区域,然后对分割区域进行分析,从而准确计算裂缝的最大最小宽度及其对应的具体位置。最终基于此模型开发了一款带UI界面的智能道路裂缝检测与分析系统,可用于实时检测与分析场景中的道路裂缝区域,可以更加方便的进行功能展示。该系统是基于pythonPyQT5开发的,支持图片、批量图片、视频以及摄像头进行目标检测分割,并保存分割结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • 界面参数设置说明
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)检测结果保存
  • 二、目标分割模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 模型推理
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

智能道路裂缝检测与分析系统在基础设施维护和安全监测方面起着非常重要的作用。道路裂缝是道路衰老和破坏的早期迹象,若不及时发现和修复,可能会导致道路结构的进一步恶化,甚至引发安全事故。基于YOLOv8的这一系统能够自动化地检测道路裂缝,准确分析裂缝的宽度和位置,极大提高了道路检测的效率和准确性,降低了传统人工检查的时间成本和误判率,确保及时维护道路安全。

智能道路裂缝检测与分析系统的应用场景包括
城市道路维护:定期检测市区道路,评估道路状况,为维修计划的制定提供数据支持。
高速公路监控:在高速公路上快速识别裂缝,及时进行修补,防止裂缝扩大。
机场跑道管理:确保飞机起降的安全,定期对跑道的裂缝进行监测和维护。
桥梁检查:对桥面的裂缝进行自动检测,预防桥梁结构受损,维护交通安全。
公路工程质量检测:工程建设后的质量控制环节,检测并记录道路的裂缝情况。
道路健康监测系统集成:作为智能交通系统或城市管理系统的一部分,提供道路状况的持续监测。

总结来说,基于YOLOv8算法开发的智能道路裂缝检测与分析系统,是道路维护管理的强有力工具。通过自动化和智能化处理道路状况数据,该系统大大提高的道路检测工作的效率和准确性,有助于及早预防和修复道路损伤,确保交通安全,并最终导致道路管理成本的降低和公共安全的提高。随着交通基础设施的不断增长和升级,此类智能监测系统将在城市管理和基础设施维护中发挥越来越重要的作用。

博主通过搜集道路裂缝的相关数据图片,根据YOLOv8的目标分割技术,基于python与Pyqt5开发了一款界面简洁的智能道路裂缝检测与分析系统,可支持图片、视频以及摄像头检测,同时可以将图片、视频以及摄像头的检测结果进行保存本文详细的介绍了此系统的核心功能以及所使用到的技术原理与制作流程。

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

检测结果说明:
裂缝最大与最小宽度的单位为像素px;
裂缝最大与最小宽度的位置表示其对应最大与最小宽度处的裂缝中心点位置。

在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行道路裂缝的检测与分割
2. 可对每条裂缝进行分析,并且显示每条裂缝的最大与最小宽度及其位置,以像素点为单位;【注对于分叉的裂缝,宽度及位置数值可能不准确】
3. 支持图片、图片批量、视频及摄像头进行检测分割;
4. 可显示总分割面积占比以及单个目标的分割面积占比
5. 界面可实时显示目标位置分割结果分割面积占比裂缝最大最小宽度及位置置信度用时等信息;
6. 结果保存:支持图片视频摄像头分割及分析结果保存

界面参数设置说明

在这里插入图片描述

  1. 置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
  2. 交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;
  3. 窗口1:显示分割结果:表示是否在检测图片中显示分割结果,默认勾选;
  4. 窗口1:显示检测框与标签:表示是否在检测图片中显示检测框与标签,默认勾选;
  5. 窗口2:显示Mask或者显示原始分割图片:表示在窗口2中显示分割的Mask或者原始图片分割内容
  6. 窗口2:显示分析结果:表示是否在窗口2中显示裂缝的最大最小宽度数值及具体位置

IoU:全称为Intersection over
Union,表示交并比。在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。IoU值越大,表示两个框之间的相似性越高。通常,当IoU值大于0.5时,认为可以检测到目标物体。这个指标常用于评估模型在特定数据集上的检测准确度。

显示Mask或者显示原始分割图片,及显示分析结果选项的功能效果如下:
在这里插入图片描述

(1)图片检测演示

1.点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
2.点击目标下拉框后,可以选定指定目标的结果信息进行显示。
3.
点击保存按钮,会对图片检测结果进行保存,存储路径为:save_data目录下。
4.点击表格中的指定行,界面会显示该行表格所写的信息内容。
注:右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行信息切换。所有检测结果均在表格中显示。

单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

点击保存按钮,会对图片的检测结果进行保存,共会保存3种类型结果,分别是:检测分割结果标识图片、分割的Mask图片以及原图分割后的图片。存储在save_data目录下,保存结果如下:
在这里插入图片描述

(2)视频检测演示

1.点击打开视频图标,打开选择需要检测的视频,就会自动显示检测结果。再次点击该按钮,会关闭视频
2.点击保存按钮,会对视频检测结果进行保存,同样会保存3种类型结果,分别是:检测分割结果标识视频、分割Mask视频以及原视频分割后的视频,存储路径为:save_data目录下。
视频检测演示:
在这里插入图片描述

视频保存演示:
在这里插入图片描述

视频检测保存结果如下:
在这里插入图片描述

(3)摄像头检测演示

1.点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击该按钮,可关闭摄像头
2.点击保存按钮,可以进行摄像头实时图像的检测结果保存
摄像头检测演示:
在这里插入图片描述

摄像头保存演示:
在这里插入图片描述

摄像头检测保存结果如下:
在这里插入图片描述

(4)检测结果保存

点击保存按钮后,会将当前选择的图片【含批量图片】、视频或者摄像头的分割结果进行保存。结果会存储在save_data目录下,保存内容如下:
在这里插入图片描述

二、目标分割模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性,在精度和速度方面都具有尖端性能。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
YOLO各版本性能对比:
在这里插入图片描述

YOLOv8网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于道路裂缝相关图片,并使用Labelimg标注工具对每张图片中的分割结果及类别进行标注。一共包含4029张图片,其中训练集包含3717张图片验证集包含200张图片测试集包含112张图片部分图像及标注如下图所示。
在这里插入图片描述

在这里插入图片描述

数据集的具体分布如下所示:
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集、验证集、测试集放入Data目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\3SegProgram\RoadCrackSeg\datasets\Data\train
val: E:\MyCVProgram\3SegProgram\RoadCrackSeg\datasets\Data\valid
test: E:\MyCVProgram\3SegProgram\RoadCrackSeg\datasets\Data\testnc: 1
names: ["Crack"]

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO# 加载yolov8预训练模型
model = YOLO("yolov8n-seg.pt")
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/Data/data.yaml', epochs=250, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)、动态特征损失(dfl_loss)以及分割损失(seg_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
分割损失(seg_loss):预测的分割结果与标定分割之前的误差,越小分割的越准确;
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP。

定位结果的PR曲线如下:
在这里插入图片描述

分割结果的PR曲线如下:
在这里插入图片描述

从上面图片曲线结果可以看到:定位的平均精度为0.799,分割的平均精度为0.685,结果还是很不错的。

4. 模型推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/168.rf.a23616300d6cacf19bdd64fde2cf7a6e.jpg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='segment')
# model = YOLO(path, task='segment',conf=0.5)# 检测图片
results = model(img_path)res = results[0].plot()# res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款智能道路裂缝检测与分析系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存。

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括环境配置文档说明、python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,发送【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的智能道路裂缝检测与分析系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/731629.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

外包干了5天,技术退步明显。。。。。

在湖南的一个安静角落,我,一个普通的大专生,开始了我的软件测试之旅。四年的外包生涯,让我在舒适区里逐渐失去了锐气,技术停滞不前,仿佛被时间遗忘。然而,生活的转机总是在不经意间降临。 与女…

家庭关怀视角下对待患病亲人态度的重要性——评析母对病父大声呵斥的行为现象

在家庭生活中,尤其是面对家人身体不适或疾病困扰的时候,我们的态度和行为方式显得尤为重要。近期,社会上存在一种令人忧虑的现象,即某些家庭中,母亲因压力或其他原因对生病的父亲表现出不耐烦甚至大吼大叫的态度。这种…

警用移动执法远程视频监控方案:安防视频监控系统EasyCVR+4G/5G移动执法仪

一、背景需求 在现代城市管理中,移动执法仪视频监控方案正逐渐成为一种高效、便捷的管理工具。该方案通过结合移动执法仪和视频监控技术,实现了对城市管理现场的实时监控和取证,有效提升了城市管理水平和效率。 移动执法仪作为现场执法的重…

TypeScript 哲学 - Object Types

readonly 修饰对象和数组的 双向可分配性是不同的 只有有一个可选属性不是意味着必须 不能传空对象,:这个例子(两个属性可选)而是如果对象有额外属性,那么必须至少加一个 可选属性。只要你在传递的值和目标类型有一个…

大模型概念解析 | Prompt Engineering

注1:本文系"概念解析"系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:大模型中的Prompt Engineering 大模型概念解析 | Prompt Engineering 第一部分 通俗解释 在人工智能的世界里,有一群被称为大模型的巨无霸。它们就像是知识的海绵…

关于STM32G070RBTx单片机使用HAL库往flash写数据的过程中死机问题

1.单片机型号:STM32G070RBTx 2.出现的问题 根据库函数FLASH_If_Write()的使用,我们分析往flash写数据的过程是把uint8_t 类型的数据(p_data)以地址的形式强转成uint64类型的,在一包128字节的数据时一次存储8位,存16次(packet_size/8)&#x…

Java项目:基于SSM框架实现的二手车交易平台【源码+开题报告+任务书+毕业论文+答辩ppt】

一、项目简介 本项目是一套基于SSM框架实现的二手车交易平台 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操作简单、功能齐…

MySQL底层原理

1. 请解释MySQL的逻辑架构和物理架构。 MySQL的逻辑架构和物理架构涉及到多个层面,包括网络连接、服务处理、存储引擎以及数据存储等部分。具体如下: 逻辑架构: 连接层(Connection Layer):客户端通过TCP…

瑞芯微 | I2S-音频基础 -1

最近调试音频驱动,顺便整理学习了一下i2s、alsa相关知识,整理成了几篇文章,后续会陆续更新。 喜欢嵌入式、Li怒晓得老铁可以关注一口君账号。 1. 音频常用术语 名称含义ADC(Analog to Digit Conversion)模拟信号转换…

Android中Fragment的onResume方法的介绍、执行时机,以及不执行回调的异常情况分析

onResume()是Fragment生命周期中的一个重要方法,表示Fragment已经获取焦点并开始与用户交互。在onResume()方法中,Fragment通常完成与用户界面交互的准备工作,比如开始执行一些动画、加载数据或注册监听器等。 1. 回调时机: onRe…

stm32普通定时器脉冲计数(发送固定脉冲个数),控制步进电机驱动器

拨码开关设置驱动器,细分 方法思路:用通用定时器TIM2,1ms产生一次中断;在中断里做IO反转; 发送10个脉冲信号

系统架构设计师考试大纲

一、系统架构设计综合知识 1. 计算机系统基本知识 1.1 计算机系统概述 1.2 计算机硬件 1.2.1 计算机硬件组成 1.2.2 处理器 1.2.3 存储器 1.2.4 总线 1.2.5 接口 1.2.6 外部设备 1.3 计算机软件 1.3.1 计算机软件概述 1.3.2 操作系统 1.3.3 数据库系统 1.3.4 文件系统 1.3.5 网…

搬家微信小程序:便捷预约,轻松解决搬家难题

在快节奏的现代生活中,搬家成为许多人不得不面对的一项繁琐任务。从整理物品、联系搬家公司,到现场协调,每一个环节都让人倍感压力。然而,如今随着科技的不断发展,搬家微信小程序的出现,为这一难题带来了便…

示波器探头的使用

无源探头(Tektronix P2220) 阻抗:1Mhz 衰减:10:1/1:1(与探头上的档位X10/X1相关,如果探头没有档位默认为10:1) 探头型号:电压 高压差分探头(Tektronix P5200A) 阻抗:1Mhz 衰减:50:1/500:1(…

微信小程序(五十四)腾讯位置服务示范(2024/3/8更新)

教程如下: 上一篇 1.先在官网注册一下账号(该绑定的都绑定一下) 腾讯位置服务官网 2.进入控制台 3.创建应用 3. 额度分配 4.下载微信小程序SDK 微信小程序SDK下载渠道 5.解压将俩js文件放在项目合适的地方 6.加入安全域名or设置不验证合…

Docker底层原理

1. 请解释Docker的架构和组件,包括Docker Engine、Docker CLI、Docker Image、Docker Container等。 Docker的架构和组件包括Docker Engine、Docker CLI、Docker Image、Docker Container等。 Docker采用的是C/S(Client-Server,客户端-服务…

集合框架 Collection - List(Arrays.asList)- 迭代器

Arrays.asList() 关于:Collection coll1 Arrays.asList(123, 4567);1、 Arrays.asList()方法属于"Arrays类",返回的是一个"java.util.Arrays.ArrayList"(这是一个 AbstractList的私有静态内部类,不是"java.util.A…

RoaringBitmap 源码

当调用add方法时,先把x分成高16位和低16位。 ">>> "是 Java 中的无符号右移操作符,表示将 x 的二进制表示向右移动 16 位 当x为 65535 ,二进制为1111111111111111,16个1,即丢掉右16位,左…

httprunner结合pytest的自动化框架结构

2. 项目结构 2.1. 初代项目结构 3. 用例结构 - pytest 3.1. 单接口用例结构 # NOTE: Generated By HttpRunner v4.3.5 # FROM: testcases\data\data_20240229_test.json from httprunner import HttpRunner, Config, Step, RunRequestclass TestCaseData20240229Test(HttpRu…

吴恩达deeplearning.ai:机器学习的开发过程与优化方法

以下内容有任何不理解可以翻看我之前的博客哦:吴恩达deeplearning.ai专栏 我想在接下来分析下开发机器学习系统的过程,这样当你自己动手时,能够做出更加正确的判断。 机器学习开发的迭代 Iterative loop of ML development 决定模型架构 第…