基于卷积神经网络的野外可食用植物分类系统

 温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 

1. 项目简介

        本文详细探讨了一基于深度学习的可食用植物图像识别系统。采用TensorFlow和Keras框架,利用卷积神经网络(CNN)进行模型训练和预测,并引入迁移学习模型,取得91%的高准确率。通过搭建Web系统,用户能上传待测可食用植物图片,系统实现了自动实时的分类识别。该系统不仅展示了深度学习在生物学领域的实际应用,同时为用户提供了一种高效、准确的野外可食用支付分类识别服务。

【演示视频】基于卷积神经网络的野外可食用植物分类系统

2. 卷积神经网络

2.1 卷积层

卷积层作为输入层后的第一层,主要目的是提取输入的特征表示。卷积层是由多个特征图组成,每个特征图由多个神经元组成,每个神经元通过卷积核与上一层特征图的局部区域相连。卷积核是一个带权值的矩阵,用于提取和计算不同的特征映射。

2.1.1 卷积核

卷积核,又叫滤波器,给定输入图像,输入图像中一个小区域中像素,加权后成为输出图像中的每个对应像素,其中权值即为卷积核。也就是说,卷积核实际上可以理解为是一个权值矩阵。
卷积所得的输出的计算公式为:

式中:Xi为输入特征图,Yj为输出特征图,权值记为Wij,bj是其偏置参数。

2.1.2 卷积运算

如图所示,对应相乘:-1x1+1x(-1)+2x0+1x(-1)+(-1)x(-2)+2x3+0x1+(-1)x2+(-2)x(-2)=7,完成了一次卷积运算,可以将卷积核作为一个权值矩阵,对图片不同位置进行运算时,共享权值。卷积神经网络每一层输出的特征图上的像素点在输入图片上映射的区域大小叫做感受野(绿色框)。

Image Name

2.1.3 多通道卷积运算

灰度图:灰度图像只有一个通道,把白色与黑色之间按对数关系分为若干等级,称为灰度。灰度分为256阶(0-255),数字越大越接近白色,越小越接近黑色 。

RGB图:彩色图有三个通道,是通过对红R、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,RGB即是代表红、绿、蓝三个通道的颜色。(每像素颜色16777216(256 * 256 * 256)种)其中R、G、B由不同的灰度级来描述,每个分量有256级灰度(0-255)

多通道卷积运算:多通道输入,单核卷积,卷出来之后相加(以三通道,单核卷积为例子)

Image Name

简单说,卷积是乘法,通道间是加法

2.1.4 padding

以下图为例,5x5的图片矩阵,经过3x3的卷积核,滑动步长为1的卷积运算,得到的特征图大小为:(5-3+1)x(5-3+1)
很明显,随着卷积次数的增加,卷积后的矩阵会越变越小,而且图像的边缘计算次数会小于图像的内部。
所以进行padding操作,即边缘补0,如下图所示,变成了(7-3+1)x(7-3+1)=5x5,得到的特征图大小个原来一样
这样解决了图像越卷越小和边缘计算次数少的问题

Image Name

2.2 池化层

2.2.1 原理和计算方法

基于局部相关性的思想,通过从局部相关的一组元素中进行采样或信息聚合,从而得到新的元素值。
平均池化层:从局部相关元素集中计算平均值并返回
x = avg({1,0,-2,1})=0
最大池化层:从局部相关元素集中选取最大的一个元素值
x = max({1,0,-2,1})=1

Image Name

2.2.2 池化层选择

特征提取的误差主要来自两个方面:

(1)邻域大小受限造成的估计值方差增大;

(2)卷积层参数误差造成估计均值的偏移。

平均池化层能减小第一种误差,更多的保留图像的背景信息,最大池化层能减小第二种误差,更多的保留纹理信息。

2.3 Flatten层

用于将输入层的数据压成一维的数据,因为卷积层处理的是二维数据,全连接层只能接收一维数据,所以用在卷积层和全连接层之间,

2.4 激活函数

激活函数的主要作用是提供网络的非线性建模能力。如果没有激活函数,那么该网络仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性映射学习能力。

3. 可食用植物分类建模

3.1 加载数据集

该数据集包含了 4005 个可食用植物的图片。数据集的创建者将图片分为了 52 个类别,利用 TensorFlow 的 `tf.keras.preprocessing.image_dataset_from_directory` 函数进行数据集的加载。

plt.figure(figsize=(20, 10))for images, labels in train_ds.take(1):labels = [tf.argmax(i) for i in labels]  for i in range(30):ax = plt.subplot(5, 10, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

folders = os.listdir('dataset')train_number = []
class_num = []for folder in folders:train_files = os.listdir('./dataset/' + folder)train_number.append(len(train_files))class_num.append(folder)# 不同类别数量,并进行排序
zipped_lists = zip(train_number, class_num)
sorted_pairs = sorted(zipped_lists)
tuples = zip(*sorted_pairs)
train_number, class_num = [ list(t) for t in  tuples]# 绘制不同类别数量分布柱状图
plt.figure(figsize=(21,10))  
plt.bar(class_num, train_number)
plt.xticks(class_num, rotation='vertical', fontsize=16)
plt.title('不同类别可食用植物样本数量分布柱状图', fontsize=30)
plt.show()

3.2 卷积神经网络模型构建

model = models.Sequential([layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  layers.MaxPooling2D((2, 2)),               # 池化层1,2*2采样layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3layers.MaxPooling2D((2, 2)),               # 池化层2,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3layers.Dropout(0.2),  layers.Flatten(),                       # Flatten层,连接卷积层与全连接层layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取layers.Dense(len(class_names))               # 输出层,输出预期结果
])model.summary()  # 打印网络结构

3.3 模型训练与评估

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStoppingepochs = 20# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',monitor='val_accuracy',verbose=1,save_best_only=True,save_weights_only=True)# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', min_delta=0.001,patience=10, verbose=1)history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,callbacks=[checkpointer, earlystopper]
)

 3.4 基于迁移学习的模型优化

 构建VGG模型结构,加载预训练的 VGG16 模型权重:

VGG16_model_con = models.Sequential([
#两次使用64个3*3的卷积核,池化后维度(112,112,64)layers.Conv2D(64, (3, 3),padding='same', activation='relu',name='block1_conv1', input_shape=(img_height, img_width, 3)), layers.Conv2D(64, (3, 3), padding='same',activation='relu',name='block1_conv2'),     layers.AveragePooling2D(pool_size=(2,2),strides=(2,2), name = 'block1_pool'),  
#两次使用128个3*3的卷积核,池化后维度(56,56,128)   layers.Conv2D(128, (3, 3),padding='same',activation='relu',name='block2_conv1'), layers.Conv2D(128, (3, 3),padding='same',activation='relu',name='block2_conv2'),     layers.AveragePooling2D(pool_size=(2,2),strides=(2,2), name = 'block2_pool'),  
#三次使用256个3*3的卷积核,池化后维度(28,28,256)layers.Conv2D(256, (3, 3), padding='same',activation='relu',name='block3_conv1'),     layers.Conv2D(256, (3, 3), padding='same',activation='relu',name='block3_conv2'),   layers.Conv2D(256, (3, 3),padding='same',activation='relu',name='block3_conv3'),     layers.AveragePooling2D(pool_size=(2,2),strides=(2,2), name = 'block3_pool'), 
#三次使用512个3*3的卷积核,池化后维度(14,14,512)layers.Conv2D(512, (3, 3),padding='same',activation='relu',name='block4_conv1'),     layers.Conv2D(512, (3, 3),padding='same',activation='relu',name='block4_conv2'),   layers.Conv2D(512, (3, 3),padding='same',activation='relu',name='block4_conv3'),     layers.AveragePooling2D(pool_size=(2,2),strides=(2,2), name = 'block4_pool'), layers.Conv2D(512, (3, 3),padding='same',activation='relu',name='block5_conv1'),     layers.Conv2D(512, (3, 3),padding='same',activation='relu',name='block5_conv2'),   layers.Conv2D(512, (3, 3),padding='same',activation='relu',name='block5_conv3'),     layers.AveragePooling2D(pool_size=(2,2),strides=(2,2), name = 'block5_pool'),    
])
VGG16_model_con.summary()# 加载模型参数
VGG16_model_con.load_weights('./vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5')
# 冻结前13层网络参数  保证加载的预训练参数不被改变
for layer in VGG16_model_con.layers[:13]:layer.trainable = False

Epoch 1/40
101/101 [==============================] - ETA: 0s - loss: 3.9311 - accuracy: 0.0471
Epoch 1: val_accuracy improved from -inf to 0.15231, saving model to best_model.h5
101/101 [==============================] - 220s 2s/step - loss: 3.9311 - accuracy: 0.0471 - val_loss: 3.5434 - val_accuracy: 0.1523
Epoch 2/40
101/101 [==============================] - ETA: 0s - loss: 3.2008 - accuracy: 0.2253
Epoch 2: val_accuracy improved from 0.15231 to 0.40574, saving model to best_model.h5
101/101 [==============================] - 220s 2s/step - loss: 3.2008 - accuracy: 0.2253 - val_loss: 2.4415 - val_accuracy: 0.4057
Epoch 3/40
101/101 [==============================] - ETA: 0s - loss: 2.0040 - accuracy: 0.4863
Epoch 3: val_accuracy improved from 0.40574 to 0.67291, saving model to best_model.h5
......
101/101 [==============================] - 235s 2s/step - loss: 0.0106 - accuracy: 0.9981 - val_loss: 0.5884 - val_accuracy: 0.9089
Epoch 17/40
101/101 [==============================] - ETA: 0s - loss: 0.0069 - accuracy: 0.9984
Epoch 17: val_accuracy did not improve from 0.90886
101/101 [==============================] - 225s 2s/step - loss: 0.0069 - accuracy: 0.9984 - val_loss: 0.6261 - val_accuracy: 0.9076
Epoch 17: early stopping

4.5 模型加载预测

 加载训练后的模型权重,对待测试植物图片进行类别预测:

from PIL import Image
import numpy as npfor cate in class_names:test_dir = f"./dataset/{cate}"files = os.listdir(test_dir)img = Image.open("./dataset/{}/{}".format(cate, files[0]))  img = np.array(img)plt.imshow(img)image = tf.image.resize(img, [img_height, img_width])img_array = tf.expand_dims(image, 0)predictions = VGG16_model_all.predict(img_array) pred_class = class_names[np.argmax(predictions)]if pred_class == cate:plt.title(f"实际类别:{cate}, 预测结果为:{pred_class}", color='green', size=18)else:plt.title(f"实际类别:{cate}, 预测结果为:{pred_class}", color='red', size=18)plt.show()

4. 可食用植物分类系统

4.1 首页介绍与注册登录

4.2 可食用植物在线预测 

5. 结论

        本文详细探讨了一基于深度学习的可食用植物图像识别系统。采用TensorFlow和Keras框架,利用卷积神经网络(CNN)进行模型训练和预测,并引入迁移学习模型,取得91%的高准确率。通过搭建Web系统,用户能上传待测可食用植物图片,系统实现了自动实时的分类识别。该系统不仅展示了深度学习在生物学领域的实际应用,同时为用户提供了一种高效、准确的野外可食用支付分类识别服务。

 欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python数据挖掘精品实战案例

2. 计算机视觉 CV 精品实战案例

3. 自然语言处理 NLP 精品实战案例

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/731256.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mac测试环境搭建

1 下载pycharm 下载地址:PyCharm:JetBrains 出品的用于数据科学和 Web 开发的 Python IDE 2 安装python3.6.8 下载地址:Index of /ftp/python/3.6.8/ 安装后提示错误 换一种方式:用conda 下载地址:Free Download | …

ipad协议847最新版

ipad协议其实就是模拟ipad端微信的人工操作,跟微信服务器通信。协议的关键点主要是PB协议、mmtls、07加密算法、rqt算法、aes加密、rsa加密等,只要把这些点拿下,就可以模拟官方微信的所有功能了,还可以模拟android、pc、mac端的登…

数字音频工作站(DAW)fl studio 21 for mac 21.2.3.3586中文版图文安装教程

随着音乐制作行业的不断发展,越来越多的音乐人和制作人开始使用数字音频工作站(DAW)来创作和制作音乐。其中FL Studio 21是一个备受欢迎的选择,因为它提供了强大的音乐制作工具和易于使用的界面。 然而,一直以来&…

2024 RubyMine 激活,分享几个RubyMine 激活的方案

文章目录 RubyMine 公司简介我这边使用RubyMine 的理由RubyMine 2023.3 最新变化AI Assistant 正式版对 AI 生成名称建议的支持改进了 Ruby 上下文单元测试生成 RailsRails 应用程序和引擎的自定义路径Rails 路径的自动导入对存储在默认位置之外的模型、控制器和邮件器的代码洞…

Python数据分析实验一:Python数据采集与存储

目录 一、实验目的与要求二、实验过程三、主要程序清单和运行结果1、爬取 “中国南海网” 站点上的相关信息2、爬取天气网站上的北京的历史天气信息 四、程序运行结果五、实验体会 一、实验目的与要求 1、目的: 理解抓取网页数据的一般处理过程;熟悉应用…

基于Redis自增实现全局ID生成器(详解)

本博客为个人学习笔记,学习网站与详细见:黑马程序员Redis入门到实战 P48 - P49 目录 全局ID生成器介绍 基于Redis自增实现全局ID 实现代码 全局ID生成器介绍 背景介绍 当用户在抢购商品时,就会生成订单并保存到数据库的某一张表中&#…

day12_SpringCloud(Gateway,Nacos配置中心,Sentinel组件)

文章目录 1 Gateway组件1.1 Gateway简介1.2 Gateway入门1.3 网关路由流程图1.4 路由工厂1.5 过滤器1.5.1 过滤器简介1.5.2 内置过滤器1.5.3 路由过滤器1.5.4 默认过滤器1.5.5 全局过滤器1.5.6 过滤器执行顺序 2 Nacos配置中心2.1 统一配置管理2.2 Nacos入门2.2.1 Nacos中添加配…

多线程多进程

秋招面试的java八股文知识点补充以及iot 这里有一点阅读补充 线程和进程区别 什么是进程? 进程 (Process) 是计算机中的一个独立执行单元,是操作系统资源分配的基本单位每个进程有各自独立的内存空间和资源,它们之间相互独立,相互之间不能…

在ubuntu上使用vscode+gcc-arm-none-eabi+openocd工具开发STM32

文章目录 所需工具安装调试搭建过程中遇到的问题 写在前面 老大上周让我用vscode开发STM32,我爽快的答应了,心想大学四年装了这么多环境了这不简简单单,更何况vscode这两年还用过,然而现实总是令人不快的——我竟然花了差不多两周…

第三百九十回

文章目录 1. 概念介绍2. 思路与方法2.1 实现思路2.2 实现方法 3. 示例代码4. 内容总结 我们在上一章回中介绍了"如何把异步的CallBack转换成事件流"相关的内容,本章回中将介绍如何延时处理数据.闲话休提,让我们一起Talk Flutter吧。 1. 概念介…

new;getline();重载<<和>>

面向对象程序设计的优点: 易维护易扩展模块化:通过设置访问级别,限制别人对自己的访问,保护了数据安全 int main(){ return 0;} 返回值0在windows下编程一般没用,但是在linux中编程,返回值有时有用 汇编与…

在Leaflet中使用Turf.js生成范围多边形的两种实现方式

目录 前言 一、场景需求 1、Leaflet.js的不足 2、Turf.js 二、原始数据展示 1、点位数据展示 2、定义样式 3、定位数据初始化 三、Turfjs中bbox生成 1、官网讲解 2、轨迹bbox生成 四、Turfjs生成外包多边形 1、官网例子 2、凸多边形生成 总结 前言 在一些共享出…

德人合科技|天锐绿盾加密软件——数据防泄漏系统

德人合科技是一家专注于提供企业级信息安全解决方案的服务商,提供的天锐绿盾加密软件是一款专为企业设计的数据安全防护产品,主要用于解决企事业单位内部敏感数据的防泄密问题。 www.drhchina.com PC端: https://isite.baidu.com/site/wjz012…

spring-cloud-openfeign 3.0.0之前版本(对应spring boot 2.4.x之前版本)feign配置加载顺序

在之前写的文章配置基础上 https://blog.csdn.net/zlpzlpzyd/article/details/136060312 下图为自己整理的

正则表达式 || 遇到字符串里面有() 就在括号后面换行

<template><div class"vertical-layout"><header><h1>testPage</h1><p>(1)第一行内容xxxxxxxxx&#xff08;2&#xff09;第二行内容xxxxxxx(3)第三行内容</p></header><main><el-button click"goToO…

Matlab|2机5节点牛拉法(含报告)

目录 主要内容 下载链接 主要内容 采用牛拉法计算2机5节点的潮流计算程序&#xff0c;程序迭代稳定&#xff0c;运行可靠&#xff0c;含报告资料。 下载链接

错误和异常之标准异常创建异常

标准异常 表 10.2 列出了所有的 Python 当前的标准异常集,所有的异常都是内建的. 所以它们在脚本启动 前或在互交命令行提示符出现时已经是可用的了. 表10.2 Python内建异常 异常名称描述所有异常的基类 python 解释器请求退出 用户中断执行(通常是输入^C) 常规错误的基类

Flutter使用auto_updater实现windows/mac桌面应用版本升级功能

因为windows应用一般大家都是从网上下载的&#xff0c;后期版本肯定会更新&#xff0c;那用flutter开发windows应用&#xff0c;怎么实现应用内版本更新功能了&#xff1f;可以使用auto_updater库&#xff0c; 这个插件允许 Flutter 桌面 应用自动更新自己 (基于 sparkle 和 wi…

#onenet网络请求http(GET,POST)

参考博文&#xff1a; POST: https://blog.csdn.net/qq_43350239/article/details/104361153 POST请求&#xff08;用串口助手测试&#xff09;&#xff1a; POST /devices/1105985351/datapoints HTTP/1.1 api-key:AdbrV5kCRsKsRCfjboYOCVcF9FY Host:api.heclouds.com Con…

Util工具类功能设计与类设计(http模块一)

目录 类功能 类定义 类实现 编译测试 Split分割字符串测试 ReadFile读取测试 WriteFile写入测试 UrlEncode编码测试 UrlDecode编码测试 StatuDesc状态码信息获取测试 ExtMime后缀名获取文件mime测试 IsDirectory&IsRegular测试 VaildPath请求路径有效性判断测…