史上最细,接口自动化测试用例设计编写总结,一篇带你打通...

目录:导读

    • 前言
    • 一、Python编程入门到精通
    • 二、接口自动化项目实战
    • 三、Web自动化项目实战
    • 四、App自动化项目实战
    • 五、一线大厂简历
    • 六、测试开发DevOps体系
    • 七、常用自动化测试工具
    • 八、JMeter性能测试
    • 九、总结(尾部小惊喜)


前言

说到自动化测试,或者说接口自动化测试,多数人的第一反应是该用什么工具,比如:Python Requests、Java HttpClient、Apifox、MeterSphere、自研的自动化平台等。

大家似乎更关注的是哪个工具更优秀,甚至出现“ 做平台的 > 写脚本的 > 用工具的 ”诸如此类的鄙视链,但却很少有人去关注接口测试用例的设计问题。

在我看来,工具并没有高低贵贱之分,只能说哪个更适合,适合当前的业务以及适合当前的团队协作。

自动化测试的本质还是测试,自动化只是为了提高测试的效率,而测试的基础是测试用例,因此我们不应该忽略接口自动化测试用例的设计问题。

换言之,当你掌握了自动化测试用例的设计思想以及方法,无论用什么工具,都能得心应手,因为工具的东西多练多操作肯定能学会,而思维认知的东西则需要在学习他人好的方法的基础上自己琢磨领悟,并形成一套自己的经验总结。

想象一下,回归测试的时候,成百上千的接口执行下来,没有报错,我们真的对系统放心吗,我们又是怎样衡量自动化脚本是否合理的呢?

1、接口信息来源

与界面功能测试相比,除了要明确需求和测试目标之外,接口测试还需要有针对性地去设计测试数据和接口的组合,确定接口信息通常有两条路径,一是通过接口文档获取,二是通过接口抓包获取。

2、接口文档

开发人员一般不喜欢写接口文档,同时也讨厌别人不写接口文档,就像程序员一般不喜欢写注释,同时也讨厌不写注释的代码。

所以测试人员想要获取一份相对完善的接口文档有时是比较麻烦的,这就需要驱动开发人员提供,这对于开发人员来说并不困难。

统一的接口文档管理方式也是比较多的,比如:在wiki上创建一个接口文档目录空间专门用于维护接口信息、系统后台管理中有专门的接口文档模块、在需求单子下面备注、使用apifox工具进行接口文档的维护管理等。

同时现在也有很多插件或工具能够帮助开发人员自动生成接口文档,比如:swagger、apidoc、yapi。

作为测试人员需要关注接口文档的有效性和及时性,包括:Request URL、Request Method、Content-Type、请求参数、响应结果、请求示例等。

3、抓包

如果没有接口文档,那就只能自己动手丰衣足食,通过抓包分析的方式来获取接口信息,常见的抓包工具比如:浏览器F12、Fiddler、Charles等,还可以把Fiddler抓到的接口导出,通过工具转成接口平台可识别的脚本,进而提高效率。

在获取到接口信息后,还需要与开发人员多进行交流,明确接口参数的含义和来源,以便于我们有针对性地进行用例的设计。

有不明确的点应当直接找开发同学问清楚,而不应该自己过多的猜想,避免自己的猜想有误造成后续用例设计的错误。在此阶段,还需梳理接口的优先级和重要程度,根据优先级顺序进行用例设计,在有限的时间内,做最大价值的事。

4、单接口测试

单接口测试主要验证接口的请求地址、请求类型、请求格式、请求参数、权限、返回值等为主,目的是保证接口能跑通,这类用例一般在接口设计完成后定稿,使用过程中可配合Mock服务完成用例编写。

5、场景逻辑验证

场景逻辑验证是以用户场景为基础,验证接口间的参数传递和业务流程是否能够正常流转,比如:用户注册接口 --> 用户登录接口 --> 修改用户信息接口,使得业务流程形成闭环。

这个阶段的用例复杂度较高,需要非常熟悉业务与接口之间的关系,同时也是接口测试的核心部分、最有价值的部分。

6、异常测试

与界面功能测试类似,除了测试各种正常场景外,还需要验证各种异常情况,主要验证参数异常。

比如:某个参数的类型是String,当你传入其他类型时是否会报错并给出提示;某个参数的长度限制200个字符,当超过200个字符时是否给出提示;某个参数是必填,当不传为空时是否有非空判断。

还需要验证逻辑异常等情况下接口是否能够处理并给出友好的提示信息、提示是否准确清晰以及返回的信息是什么。通常情况下,关注参数的异常场景会比较多,可以用等价类、边界值等方法进行传参的设计。

7、尽量自动化

所有用例应该是非交互式的,能自动化就不要手动去获取。最常见的就是token的获取,获取token的方法也有很多种,最常用的就是通过调用登录接口获取返回值中的token,用于后续接口的鉴权。

还有一些开放平台接口,token有特定的生成规则,就可以将其写成脚本自动生成token,而不是每次执行测试用例之前,需要手动生成token再复制粘贴到脚本中,特别是分环境测试时就会很麻烦,而且token一般是有有效时间的,写成自动化脚本,每次都获取都是最新的,就不用担心token过期的问题了。

8、独立性

用例之间相互独立,不能有依赖,需要在每一个用例里处理好前置条件,而不是多个用例相互依赖。

9、可重复性

用例测试应该是可以重复执行的,因此需要注意参数的生成方式。

10、合理的断言

黑盒测试的重点是输入和输出,其实集成后的接口测试也属于黑盒测试,也许我们不需要关注内部的代码是如何实现的,更多的是关注请求参数和响应结果。

因此在设计用例时,需要重点关注断言的设计,好的断言能够帮助我们发现问题,没有断言的用例或者脚本就是在耍流氓,完全没有意义,如果没有断言,全部用例都是pass,那我们也无法真正对系统放心,无法确保一定没有问题。

从接口层面上看,我们至少需要关注两方面的验证,一是数据结构验证,二是核心数值验证。

数据结构验证就是校验接口返回的数据结构是否与事先约定好的一致,调用方在处理数据时,肯定是按照事先约定好的数据结构来解析数据,如果数据结构发生了变化,那么对调用方来说,无疑是灾难性的事故,也就是说之前已经开发完成的程序在对接时就会出错,导致需要重新开发。

核心数值的验证需要根据不同的业务场景,有针对性地验证某些键值是否与预期一致,同时可以结合数据库查询的方式来验证,比如:用户注册接口调用成功后会返回一个用户ID,此时就可以使用SELECT * FROM user_table WHERE user_id = “”;以判断是否真的注册成功,这个比较依赖于测试人员对于业务的了解程度,根据实际情况灵活设计即可。

除此之外,还有一些额外的验证点在需要的时候也可以进行校验,比如:返回的URL是否能访问、涉及到数据流转的、返回的数据是否真的有必要(避免返回数据量过大导致意外情况发生)。

通过添加合理的断言,才能让接口自动化用例有一定的业务价值,能够真正帮助到团队提升效率,这样的测试结果才能让人安心。

11、公共参数

接口自动化测试中一个很重要的环境就是测试数据的准备,要想让脚本可以在多套环境中运行,那么测试数据就不能写得太死,需要根据具体环境去自动获取一些数据值。

公共参数就是通过不同作用域或标识的区分,有一个专门的模块来处理一些公用数据的存放,比如:不同环境的账号密码,不同环境的URL等。

12、数据集合

通过特定的API或数据库SQL,事先生成一些所需的数据作为前置条件,然后存放到一个特定的集合中,需要的时候再从数据集合里面取。

13、数据模板

由于测试环境一般会有多套,为了方便环境的切换,我们不应该把太多的数据信息写死,而是通过填写一些简单的信息,再调用基础接口,自动生成一整套业务数据。

比如:用户信息包含用户名、手机号、邮箱、注册时间等,此时我们不应该把这些信息都写死,而是通过用户id去调用用户信息查询接口获取一整套用户信息数据。

对于接口自动化测试用例的设计,可能不同的人有不同的思路和想法,我们要做的就是取其精华,把一些好的思路和方法在具体项目中实践,并形成一套自己的经验总结。

下面是我整理的2023年最全的软件测试工程师学习知识架构体系图

一、Python编程入门到精通

请添加图片描述

二、接口自动化项目实战

请添加图片描述

三、Web自动化项目实战

请添加图片描述

四、App自动化项目实战

请添加图片描述

五、一线大厂简历

请添加图片描述

六、测试开发DevOps体系

请添加图片描述

七、常用自动化测试工具

请添加图片描述

八、JMeter性能测试

请添加图片描述

九、总结(尾部小惊喜)

追逐梦想的路上,不畏艰难险阻,坚持不懈是成功的钥匙。每一步脚印,都铸就辉煌未来,让心中的火焰照亮前行的道路。

在奋斗的征途中,让汗水成为最亮丽的风景,每一次挑战都是向着梦想迈进的步伐,坚持信念,砥砺前行,终将收获属于你的辉煌。

面对风雨与挑战,把握每一个现在,用不懈努力编织成功的篇章。心怀梦想,脚踏实地,让每一天的辛勤汇聚成未来的璀璨星河。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/730246.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

亚信安慧AntDB:“融合+实时”引领数据库创新

在当今多变的数据应用场景中,AntDB作为行业领先的超融合流式实时数仓,秉承着“融合实时”的研发理念,全面应对企业日益复杂的数据处理需求。通过SQL接口访问多种执行引擎,AntDB在实现交易、分析等多重能力的“超融合”方面取得了显…

SQL设计时增加说明列

后关闭sql Studio,然后打开注册表,注册表地址: 计算机\HKEY_CURRENT_USER\SOFTWARE\Microsoft\SQL Server Management Studio\18.0_IsoShell\DataProject 如有版本不同,红色内容有所变化,修改内容如下: SSVPropViewColumnsSQL70,SSVPropViewColumnsSQL80 全修改为 1,2,6,7…

魔方,3循环是你的秘密[嗑瓜子]。​

引理1.任意Sn中的元素:(N_1N_2N_3...N_m) 证明: (N_1N_2N_3...N_m) (N_1N_m)(N_1N_m-1)...(N_1N_2) 举例: 比如(1234) (14)(13)(12) (3214) (34)(31)(32) 2.任意An可以表示成3循环的乘积, 证明: 1.An中的元素属于…

抖店无货源模式,采购商品、平台渠道正规吗?相关基础问题解答

我是王路飞。 无货源模式,相信你们也都不陌生了。 每个电商平台都存在这种模式,且我以为,每个电商平台的发展壮大,最应该感谢的就是这些无货源商家了。 而现在说到无货源,最适合普通人的无疑就是抖音小店了。 今天…

[云原生] k8s之存储卷

一、emptyDir存储卷 当Pod被分配给节点时,首先创建emptyDir卷,并且只要该Pod在该节点上运行,该卷就会存在。正如卷的名字所述,它最初是空的。Pod 中的容器可以读取和写入emptyDir卷中的相同文件,尽管该卷可以挂载到每…

【Redis】redis持久化

redis 持久化 所谓的持久化,就是把数据(如内存中的对象)保存到可永久保存的存储设备中(如磁盘)。 redis 开始是将所有数据保持在内存中,对数据的更新将根据策略配置异步地保存在磁盘中。 持久化的方式 快照方式 快照是某时某刻对数据的完整备份。在以…

3dmax画图卡顿解决方法---模大狮模型网

当你在使用3D Max进行画图时遇到卡顿问题,可以尝试以下方法来解决: 减少模型复杂度:如果你的场景中有过多的高细节模型,可能会导致卡顿。尝试减少模型的复杂度,合并或简化多边形数量过多的模型。这将减轻计算机的负担&…

【UE 材质 Niagara】爆炸效果

目录 效果 步骤 一、材质部分 二、Niagara部分 效果 步骤 一、材质部分 1. 创建一个材质,这里命名为“M_Burst” 打开“M_Burst”,设置混合模式为半透明,设置着色模型为无光照,勾选双面显示 在材质图表中首先创建扰动效果 其…

智能指针基础知识【C++】【RAII思想 || unique_ptr || shared_ptrweak_ptr || 循环引用问题】

目录 一,为什么需要智能指针 二,内存泄露的基本认识 1. 内存泄露分类 2. 常见的内存检测工具 3,如何避免内存泄露 三,智能指针的使用与原理 1. RAII思想 2. 智能指针 (1. unique_ptr (2. shared_…

数据治理实战——翼支付金融板块业务数仓建设和数据治理之路

目录 一、数据治理背景 二、数据治理建设内容 2.1 组织协同 2.2 平台建设 2.3 数据应用治理 2.4 数据规范 2.5 数据安全 三、企业级数仓建设 3.1 调研阶段 2.2 平台护航 2.3 数仓分层 2.4 维度建模 2.4.1 维度建模四步曲 2.4.2 命名规范 2.4.3 资产沉淀 2.4.4 …

百度智能云发布专用向量数据库 VDB 1.0,全新设计内核开启性能狂飙

1 专用向量数据库应对未来业务挑战 向量数据库 向量检索 数据库 向量数据库大致可以分为 2 部分:向量数据的检索,以及向量数据的存储和管理。 向量数据库的性能,比如高 QPS、低延时等,使得业务能够更快的响应用户的查询请求…

2024 AI 辅助研发的新纪年

随着人工智能技术的持续发展与突破,2024年AI辅助研发正成为科技界和工业界瞩目的焦点。从医药研发到汽车设计,从软件开发到材料科学,AI正逐渐渗透到研发的各个环节,变革着传统的研发模式。在这一背景下,AI辅助研发不仅…

【kubernetes】关于k8s集群中的ingress规则案例

目录 一、k8s 对外服务之 Ingress 1.1什么是ingress 1.2外部的应用能够访问集群内的服务有哪些方案? 1.3Ingress 组成 1.4Ingress-Nginx 工作原理 1.5ingress 暴露服务的方式 二、实操ingress暴露服务 前期.部署 nginx-ingress-controller 2.1基于host网络…

RabbitMQ的Windows版安装教程

文章目录 前言一、Windows安装RabbitMQ总结 前言 曾经写过一篇关于RabbitMQ的Ubuntu安装教程(http://t.csdnimg.cn/5CYfC),当时使用的是Docker将RabbitMQ安装到虚拟机上,但是有很多小伙伴问Windows上如何进行安装RabbitMQ&#x…

flink重温笔记(十二): flink 高级特性和新特性(1)——End-to-End Exactly-Once(端到端精确一致性语义)

Flink学习笔记 前言:今天是学习 flink 的第 12 天啦!学习了 flink 高级特性和新特性之 End-to-End Exactly-Once(端到端精确一致性语义),主要是解决大数据领域数据从数据源到数据落点的一致性,不会容易造成…

官宣!百度智能云千帆产品发布会3月21日北京见!

回望2023大模型狂奔的一年,百度智能云千帆大模型平台无疑是浓墨重彩的一笔。自2023年3月27日正式问世后,百度智能云千帆大模型平台以突飞猛进的速度持续发展。从模型、应用到生态,“千帆”书写着自身在大模型时代的答卷。 作为全球首个一站式…

指针的学习5

目录 sizeof和strlen的区别 sizeof strlen 数组和指针笔试题解析 一维数组 字符数组 二维数组 指针运算笔试题解析 题目1: 题目2: 题目3: 题目4: 题目5: 题目6: 题目7: sizeof和…

Jmeter二次开发实现rsa加密

jmeter函数助手提供了大量的函数,像 counter、digest、random、split、strLen,这些函数在接口测试、性能测试中大量被使用,但是大家在实际工作,形形色色的测试需求不同,导致jmeter自带或者扩展插件给我们提供的函数无法…

Redis中的SCAN渐进式扫描底层原理

Scan渐进式扫描原理 概述 由于Redis是单线程再处理用户的命令,而Keys命令会一次性遍历所有key,于是在命令执行过程中,无法执行其他命令。这就导致如果Redis中的key比较多,那么Keys命令执行时间就会比较长,从而阻塞Re…

即插即用篇 | YOLOv8 引入 ParNetAttention 注意力机制 | 《NON-DEEP NETWORKS》

论文名称:《NON-DEEP NETWORKS》 论文地址:https://arxiv.org/pdf/2110.07641.pdf 代码地址:https://github.com/imankgoyal/NonDeepNetworks 文章目录 1 原理2 源代码3 添加方式4 模型 yaml 文件template-backbone.yamltemplate-small.yamltemplate-large.yaml