疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)

疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)

目录

疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)

1.疲劳驾驶检测和识别方法

2.疲劳驾驶数据集

 (1)疲劳驾驶数据集说明

 (2)自定义数据集

3.人脸检测模型

4.疲劳驾驶分类模型训练

(1)项目安装

(2)准备数据

(3)疲劳驾驶识别分类模型训练(Pytorch)

(4) 可视化训练过程

(5) 疲劳驾驶识别效果

(6) 一些优化建议

(7) 一些运行错误处理方法

5.项目源码下载(Python版)

6. C++实现疲劳驾驶检测识别

7. Android实现疲劳驾驶检测识别


这是项目《疲劳驾驶检测和识别》系列之《Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)》;项目基于深度学习框架Pytorch开发一个高精度,可实时疲劳驾驶检测和识别算法;项目源码支持模型有resnet18,resnet34,resnet50, mobilenet_v2以及googlenet等常见的深度学习模型,用户也可以自定义自己的模型进行训练;项目源码配套了完整的训练代码和数据集,配置好开发环境,即可开始训练。

准确率还挺高的,采用轻量级mobilenet_v2模型的疲劳驾驶识别准确率也可以高达97.8682%左右,满足业务性能需求。

模型input sizeTest准确率
mobilenet_v2112×11297.8682
googlenet112×11298.4496
resnet18112×11298.2558

先展示一下,Python版本的疲劳驾驶检测和识别Demo效果

 

尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/131834946


更多项目《疲劳驾驶检测和识别》系列文章请参考:

  1. 疲劳驾驶检测和识别1: 疲劳驾驶检测和识别数据集(含下载链接)https://blog.csdn.net/guyuealian/article/details/131718648
  2. 疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)https://blog.csdn.net/guyuealian/article/details/131834946
  3. 疲劳驾驶检测和识别3:Android实现疲劳驾驶检测和识别(含源码,可实时检测)https://blog.csdn.net/guyuealian/article/details/131834970

  4. 疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)https://panjinquan.blog.csdn.net/article/details/131834980


1.疲劳驾驶检测和识别方法

疲劳驾驶检测和识别方法有多种实现方案,这里采用最常规的方法:基于人脸检测+疲劳驾驶分类识别方法,即先采用通用的人脸检测模型,进行人脸检测定位人体区域,然后按照一定规则裁剪人脸检测区域,再训练一个疲劳驾驶行为识别分类器,完成疲劳驾驶检测和识别任务;

这样做的好处,是可以利用现有的人脸检测模型进行人脸检测,而无需重新标注疲劳驾驶的人脸检测框,可减少人工标注成本低;而疲劳驾驶分类数据相对而言比较容易采集,分类模型可针对性进行优化。

当然,也可以直接基于目标检测的方法直接检测疲劳驾驶和非疲劳驾驶,项目也提供了疲劳驾驶目标检测的数据集


2.疲劳驾驶数据集

 (1)疲劳驾驶数据集说明

在疲劳驾驶检测和识别算法开发中,我们需要定义疲劳驾驶的行为状态,项目将疲劳驾驶状态分为两个状态,分别为:疲劳(drowsy),不疲劳(undrowsy),为了便于大家理解,这里给出这两个状态的图示说明

  • 疲劳(drowsy): 如果驾驶过程中出现闭眼,打哈欠等疲劳困倦等表情动作,则认为是疲劳驾驶(drowsy)
  • 不疲劳(undrowsy):正常情况下,没有出现闭眼,打哈欠的表情动作,则认为是清醒状态,即非疲劳状态(undrowsy)

关于疲劳驾驶数据集的使用说明请参考我的一篇博客: https://blog.csdn.net/guyuealian/article/details/131718648

项目提供了疲劳驾驶检测数据集和疲劳驾驶分类数据集,由于我们的实现方案采用基于人脸检测+疲劳驾驶分类识别方法,因此模型训练只使用了疲劳驾驶分类数据集:Drowsy-Driving-Cls1,Drowsy-Driving-Cls2;疲劳驾驶检测数据集并未使用。

 (2)自定义数据集

如果需要新增类别数据,或者需要自定数据集进行训练,可参考如下进行处理:

  • 建立Train和Test数据集,要求相同类别的图片,放在同一个文件夹下;且子目录文件夹命名为类别名称,如

  • 类别文件:一行一个列表:​class_name.txt​
     (最后一行,请多回车一行)
A
B
C
D
  • 修改配置文件的数据路径:configs/​config.yaml​
train_data: # 可添加多个数据集- 'data/dataset/train1' - 'data/dataset/train2'
test_data: 'data/dataset/test'
class_name: 'data/dataset/class_name.txt'
...
...

3.人脸检测模型

本项目人脸检测训练代码请参考:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB 

这是一个基于SSD改进且轻量化后人脸检测模型,很slim,整个模型仅仅1.7M左右,在普通Android手机都可以实时检测。人脸检测方法在网上有一大堆现成的方法可以使用,完全可以不局限我这个方法。

当然可以基于YOLOv5训练一个人脸检测模型:人脸检测和行人检测2:YOLOv5实现人脸检测和行人检测(含数据集和训练代码)


4.疲劳驾驶分类模型训练

准备好疲劳驾驶识别数据后,接下来就可以开始训练疲劳驾驶识别分类模型了;项目模型支持resnet18,resnet34,resnet50, mobilenet_v2以及googlenet等常见的深度学习模型,考虑到后续我们需要将疲劳驾驶识别模型部署到Android平台中,因此项目选择计算量比较小的轻量化模型mobilenet_v2;如果不用端上部署,完全可以使用参数量更大的模型,如resnet50等模型。

 整套工程项目基本结构如下:

.
├── classifier                 # 训练模型相关工具
├── configs                    # 训练配置文件
├── data                       # 训练数据
├── libs           
│   ├── convert                # 将模型转换为ONNX工具
│   ├── light_detector         # 人脸检测
│   ├── detector.py            # 人脸检测demo
│   └── README.md               
├── demo.py              # demo
├── README.md            # 项目工程说明文档
├── requirements.txt     # 项目相关依赖包
└── train.py             # 训练文件

(1)项目安装

 项目依赖python包请参考requirements.txt,使用pip安装即可:

numpy==1.16.3
matplotlib==3.1.0
Pillow==6.0.0
easydict==1.9
opencv-contrib-python==4.5.2.52
opencv-python==4.5.1.48
pandas==1.1.5
PyYAML==5.3.1
scikit-image==0.17.2
scikit-learn==0.24.0
scipy==1.5.4
seaborn==0.11.2
tensorboard==2.5.0
tensorboardX==2.1
torch==1.7.1+cu110
torchvision==0.8.2+cu110
tqdm==4.55.1
xmltodict==0.12.0
basetrainer
pybaseutils==0.6.5

项目安装教程请参考(初学者入门,麻烦先看完下面教程,配置好开发环境):

  • 项目开发使用教程和常见问题和解决方法
  • 视频教程:1 手把手教你安装CUDA和cuDNN(1)
  • 视频教程:2 手把手教你安装CUDA和cuDNN(2)
  • 视频教程:3 如何用Anaconda创建pycharm环境
  • 视频教程:4 如何在pycharm中使用Anaconda创建的python环境

(2)准备数据

下载疲劳驾驶分类数据集:Drowsy-Driving-Cls1,Drowsy-Driving-Cls2,然后解压

 关于疲劳驾驶数据集的使用说明请参考我的一篇博客: https://blog.csdn.net/guyuealian/article/details/131718648

(3)疲劳驾驶识别分类模型训练(Pytorch)

项目在《Pytorch基础训练库Pytorch-Base-Trainer(支持模型剪枝 分布式训练)》基础上实现了疲劳驾驶识别分类模型训练和测试,整套训练代码非常简单操作,用户只需要将相同类别的图片数据放在同一个目录下,并填写好对应的数据路径,即可开始训练了。

训练框架采用Pytorch,整套训练代码支持的内容主要有:

  • 目前支持的backbone有:googlenet,resnet[18,34,50], ,mobilenet_v2等, 其他backbone可以自定义添加
  • 训练参数可以通过(configs/config.yaml)配置文件进行设置

修改配置文件的数据路径:configs/​config.yaml​

  • train_data和test_data修改为自己的数据路径
  • 注意数据路径分隔符使用【/】,不是【\】
  • 项目不要出现含有中文字符的目录文件或路径,否则会出现很多异常!
# 训练数据集,可支持多个数据集(不要出现中文路径)
train_data:- 'path/to/Drowsy-Driving-Cls1/trainval'- 'path/to/Drowsy-Driving-Cls2/trainval'
# 测试数据集(不要出现中文路径)
test_data:- 'path/to/Drowsy-Driving-Cls1/test'# 类别文件
class_name: 'data/class_name.txt'
train_transform: "train"       # 训练使用的数据增强方法
test_transform: "val"          # 测试使用的数据增强方法
work_dir: "work_space/"        # 保存输出模型的目录
net_type: "mobilenet_v2"       # 骨干网络,支持:resnet18/50,mobilenet_v2,googlenet,inception_v3
width_mult: 1.0                # 模型宽度因子
input_size: [ 112,112 ]        # 模型输入大小
rgb_mean: [ 0.5, 0.5, 0.5 ]    # for normalize inputs to [-1, 1],Sequence of means for each channel.
rgb_std: [ 0.5, 0.5, 0.5 ]     # for normalize,Sequence of standard deviations for each channel.
batch_size: 128                # batch_size
lr: 0.01                       # 初始学习率
optim_type: "SGD"              # 选择优化器,SGD,Adam
loss_type: "CrossEntropyLoss"  # 选择损失函数:支持CrossEntropyLoss,LabelSmooth
momentum: 0.9                  # SGD momentum
num_epochs: 120                # 训练循环次数
num_warn_up: 0                 # warn-up次数
num_workers: 8                 # 加载数据工作进程数
weight_decay: 0.0005           # weight_decay,默认5e-4
scheduler: "multi-step"        # 学习率调整策略
milestones: [ 30,60,100 ]       # 下调学习率方式
gpu_id: [ 2 ]                  # GPU ID
log_freq: 50                   # LOG打印频率
progress: True                 # 是否显示进度条
pretrained: True               # 是否使用pretrained模型
finetune: False                # 是否进行finetune

开始训练,在终端输入: 

python train.py -c configs/config.yaml 

训练完成后,训练集的Accuracy在98.0%以上,测试集的Accuracy在97.5%左右

(4) 可视化训练过程

训练过程可视化工具是使用Tensorboard,在终端(Terminal)输入命令:

使用教程,请参考:项目开发使用教程和常见问题和解决方法

# 需要安装tensorboard==2.5.0和tensorboardX==2.1
# 基本方法
tensorboard --logdir=path/to/log/
# 例如
tensorboard --logdir=tensorboard --logdir=data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/log

可视化效果 

​​​​

 ​​  

(5) 疲劳驾驶识别效果

训练完成后,训练集的Accuracy在99%以上,测试集的Accuracy在97.5%左右,下表给出已经训练好的三个模型,其中mobilenet_v2的测试集准确率可以达到97.8682%,googlenet的准确率可以达到98.4496%,resnet18的准确率可以达到98.2558%

模型input sizeTest准确率
mobilenet_v2112×11297.8682
googlenet112×11298.4496
resnet18112×11298.2558
  • 测试图片文件
# 测试图片(Linux系统)
image_dir='data/test_image' # 测试图片的目录
model_file="data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth" # 模型文件
out_dir="output/" # 保存检测结果
python demo.py --image_dir $image_dir --model_file $model_file --out_dir $out_dir

Windows系统,请将$image_dir, $model_file ,$out_dir等变量代替为对应的变量值即可,如

# 测试图片(Windows系统)
python demo.py --image_dir data/test_image --model_file data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth --out_dir output/
  • 测试视频文件
# 测试视频文件(Linux系统)
video_file="data/video-test.mp4" # 测试视频文件,如*.mp4,*.avi等
model_file="data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth" # 模型文件
out_dir="output/" # 保存检测结果
python demo.py --video_file $video_file --model_file $model_file --out_dir $out_dir
# 测试视频文件(Windows系统)
python demo.py --video_file data/video-test.mp4 --model_file data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth --out_dir output/
  • 测试摄像头
# 测试摄像头(Linux系统)
video_file=0 # 测试摄像头ID
model_file="data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth" # 模型文件
out_dir="output/" # 保存检测结果
python demo.py --video_file $video_file --model_file $model_file --out_dir $out_dir
# 测试摄像头(Windows系统)
python demo.py --video_file 0 --model_file data/pretrained/mobilenet_v2_1.0_112_112_CrossEntropyLoss_20230720174004/model/best_model_095_97.8682.pth  --out_dir output/

下面是疲劳驾驶检测和识别的效果展示:

 

(6) 一些优化建议

 如果想进一步提高模型的性能,可以尝试:

  1. ​ 增加训练的样本数据: 建议根据自己的业务场景,采集相关数据,比如采集多个人的疲劳驾驶的数据,提高模型泛化能力;
  2. 使用参数量更大的模型: 本教程使用的是mobilenet_v2模型,属于比较轻量级的分类模型,采用更大的模型(如resnet50),理论上其精度更高,但推理速度也较慢。
  3. 尝试不同数据增强的组合进行训练
  4. 增加数据增强: 已经支持: 随机裁剪,随机翻转,随机旋转,颜色变换等数据增强方式,可以尝试诸如mixup,CutMix等更复杂的数据增强方式
  5. 样本均衡: 原始数据疲劳驾驶识别类别数据并不均衡,类别notsmoking的样本数据偏多,而smoking数据偏少,这会导致训练的模型会偏向于样本数较多的类别。建议进行样本均衡处理。
  6. 清洗数据集:原始数据已经进行人工清洗了,但依然存在一些模糊的,低质的,模棱两可的样本;建议你,在训练前,再次清洗数据集,不然会影响模型的识别的准确率。
  7. 调超参: 比如学习率调整策略,优化器(SGD,Adam等)
  8. 损失函数: 目前训练代码已经支持:交叉熵,LabelSmoothing,可以尝试FocalLoss等损失函数

(7) 一些运行错误处理方法

  • 项目不要出现含有中文字符的目录文件或路径,否则会出现很多异常!!!!!!!!

  • cannot import name 'load_state_dict_from_url' 

由于一些版本升级,会导致部分接口函数不能使用,请确保版本对应

torch==1.7.1

torchvision==0.8.2

或者将对应python文件将

from torchvision.models.resnet import model_urls, load_state_dict_from_url

修改为:

from torch.hub import load_state_dict_from_url
model_urls = {'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth','resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth','resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth','resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth','resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth','resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth','resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth','resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth','wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth','wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}

5.项目源码下载(Python版)

项目源码下载地址:疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)

整套项目源码内容包含:

  1. 提供疲劳驾驶检测数据集:包含Drowsy-Driving-Det1和Drowsy-Driving-Det1,总共13000+张图片;标注格式统一转换为VOC数据格式,其中人脸框标注了的两个状态:drowsy(疲劳),undrowsy(非疲劳),可用于深度学习疲劳驾驶目标检测模型算法开发。(本项目并未使用这个两个数据集)

  2. 提供疲劳驾驶分类数据集:包含Drowsy-Driving-Cls1,Drowsy-Driving-Cls2和Drowsy-Driving-Cls3,总共50000+张图片;所有人脸图片,都已经按照其所属类别存放于各自的文件夹下,可用于深度学习疲劳驾驶分类识别模型算法开发。(本项目主要使用Drowsy-Driving-Cls1,Drowsy-Driving-Cls2两个数据集)

  3. 提供疲劳驾驶分类模型训练代码:train.py
  4. 提供疲劳驾驶分类模型测试代码:demo.py
  5. Demo支持图片,视频和摄像头测试
  6. 支持自定义数据集进行训练
  7. 项目支持模型:resnet18,resnet34,resnet50, mobilenet_v2以及googlenet等常见的深度学习模型
  8. 项目源码自带训练好的模型文件,无需重新训练,可直接运行测试: python demo.py
  9. 在普通电脑CPU/GPU上可以实时检测和识别


6. C++实现疲劳驾驶检测识别

参考文章:疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)https://panjinquan.blog.csdn.net/article/details/131834980


7. Android实现疲劳驾驶检测识别

参考文章:疲劳驾驶检测和识别3:Android实现疲劳驾驶检测和识别(含源码,可实时检测)https://blog.csdn.net/guyuealian/article/details/131834970

   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/7300.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL 8.0 OCP (1Z0-908) 考点精析-性能优化考点6:MySQL Enterprise Monitor之Query Analyzer

文章目录 MySQL 8.0 OCP (1Z0-908) 考点精析-性能优化考点6:MySQL Enterprise Monitor之Query AnalyzerMySQL Enterprise Monitor之Query AnalyzerQuery Response Time index (QRTi)例题例题1: Query Analyzer答案与解析1 参考 【免责声明】文章仅供学习交流&#x…

vue中如何通过webpack-bundle-analyzer打包分析工具进行配置优化

vue中随着项目的不断功能迭代和开发,项目文件越来越多,项目的打包文件也越来越大。如何对打包文件进行分析优化,减小打包文件大小呢?可以通过webpack-bundle-analyzer 这个打包分析工具进行解决。 1、webpack-bundle-analyzer的安…

Python Flask构建微信小程序订餐系统 (十一)

🔥 已经删除的会员不允许进行编辑昵称 🔥 🔥 已经删除的会员要隐藏掉会员信息的编辑按钮 🔥 🔥 创建商品表 food 🔥 CREATE TABLE `food` (`id` int(11) unsigned NOT NULL AUTO_INCREMENT,`cat_id` int(11) NOT NULL DEFAULT 0 COMMENT 分类id,`name` varchar…

【算法题解】51. 二叉树的最近公共祖先

这是一道 中等难度 的题 https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-tree/ 题目 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为…

【模型压缩】 LPPN论文阅读笔记

LPPN论文阅读笔记 LPPN: A Lightweight Network for Fast Phase Picking 背景 深度学习模型的问题在于计算复杂度较高,在实际数据处理中需要面临较高的处理代价,且需要专用的加速处理设备,如GPU。随着数据累积,迫切需要设计一种…

【力扣刷题 | 第二十二天】

目录 前言: 63. 不同路径 II - 力扣(LeetCode) 343. 整数拆分 - 力扣(LeetCode) 总结: 前言: 今天我们爆刷动态规划章节的题目,相关的算法理论介绍我也有写过文章:【夜…

深度学习anaconda+pycharm+虚拟环境迁移

一、下载好anaconda和pycharm安装包。 下载anaconda:Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror pycharm汉化包 二、安装anaconda 深度学习环境配置-Anaconda以及pytorch1.2.0的环境配置(Bubbliiiing 深度学习 教程&…

Java版本企业电子招标采购系统源码:营造全面规范安全的电子招投标环境,促进招投标市场健康可持续发展

营造全面规范安全的电子招投标环境,促进招投标市场健康可持续发展 传统采购模式面临的挑战 一、立项管理 1、招标立项申请 功能点:招标类项目立项申请入口,用户可以保存为草稿,提交。 2、非招标立项申请 功能点:非招标…

uniapp小程序跳转其他小程序uni.navigateToMiniProgram效果demo(整理)

放点击事件里面即可 uni.navigateToMiniProgram({appId: , //跳转的小程序的aooIdpath: pages/index/index?id123, //如果这里不填,默认是跳转到对方小程序的主页面extraData: { //需要传给对方小程序的数据data1: test},success(res) {// 打开成功} })

JAVA设计模式——单例模式

单例模式是应用最广的设计模式之一,也是程序员最熟悉的一个设计模式,使用单例模式的类必须保证只能有创建一个对象。 今天主要是回顾一下单例模式,主要是想搞懂以下几个问题 为什么要使用单例? 如何实现一个单例? 单…

c++11/c++98动态规划入门第5课,经典DP问题 --- 区间

第1题 取数问题 查看测评数据信息 有一排N个数,你和小明2个人玩游戏,每个人轮流从2端取数,每次可以从左或右取,不能从中间取。你取的所有的数的和是你的得分,小明取的所有的数的和是小明的得分。如果你先取&#x…

【图像分割】基于蜣螂优化算法DBO的Otsu(大津法)多阈值电表数字图像分割 电表数字识别【Matlab代码#51】

文章目录 【可更换其他算法,获取资源请见文章第5节:资源获取】1. 原始蜣螂优化算法1.1 滚球行为1.2 跳舞行为1.3 繁殖行为1.4 偷窃行为 2. 多阈值Otsu原理3. 部分代码展示4. 仿真结果展示5. 资源获取说明 【可更换其他算法,获取资源请见文章第…

springboot 项目启动不打印spring 启动日志

今天项目遇到一个很奇怪的问题,服务在启动时,不打印spring 的启动日志。经过排查发现是因为其他的依赖引入了 log4j 的依赖,因为我们的项目用的是logback,所以项目中没有log4j 的相关配置,所以干扰到了日志的打印 原因…

Vue入门项目——WebApi

Vue入门——WebApi vue3项目搭建组合式API响应式APIreactive()ref() 生命周期钩子computed计算属性函数watch监听函数父子通信模板引用组合选项 vue3项目搭建 简单看下Vue3的优势吧 下载安装npm及node.js16.0以上版本(确保安装成功可用如下代码检查版本&#xff0…

工厂电能质量治理解决方案

1、概述 谐波的危害十分严重,尤其在工厂这种设备较多的场合。大部分设备都是谐波源,谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧…

RocketMQ 5.0 无状态实时性消费详解

作者:绍舒 背景 RocketMQ 5.0 版本引入了 Proxy 模块、无状态 pop 消费机制和 gRPC 协议等创新功能,同时还推出了一种全新的客户端类型:SimpleConsumer。 SimpleConsumer 客户端采用了无状态的 pop 机制,彻底解决了在客户端发布…

QT字节数组类QByteArray

QT字节数组类QByteArray 初始化访问某个元素截取字符串获取字节数组的大小数据转换与处理Hex转换数值转换与输出 字母大小写转换字符串数值转化为各类数值QBQyteArray和char*互转QByteArray 和std::string互转与字符串QString互转QByteArray和自定义结构体之间的转化判断是否为…

区块链实验室(11) - PBFT耗时与流量特征

以前面仿真程序为例,分析PBFT的耗时与流量特征。实验如下,100个节点构成1个无标度网络,节点最小度为5,最大度为38. 从每个节点发起1次交易共识。统计每次交易的耗时以及流量。本文所述的流量见前述仿真程序的说明:区块链实验室(3)…

13.4.2 【Linux】sudo

相对于 su 需要了解新切换的使用者密码 (常常是需要 root 的密码), sudo 的执行则仅需要自己的密码即可。sudo 可以让你以其他用户的身份执行指令 (通常是使用 root 的身份来执行指令),因此并非所有人都能够…

AcWing 1210. 连号区间数

输入样例1: 4 3 2 4 1输出样例1: 7输入样例2: 5 3 4 2 5 1输出样例2: 9样例解释 第一个用例中,有 77 个连号区间分别是:[1,1],[1,2],[1,3],[1,4],[2,2],[3,3],[4,4][1,1],[1,2],[1,3],[1,4],[2,2],[3,3…