缩放算法优化步骤详解

添加链接描述

背景

假设数据存放在在unsigned char* m_pData 里面,宽和高分别是:m_nDataWidth m_nDataHeight
给定缩放比例:fXZoom fYZoom,返回缩放后的unsigned char* dataZoom
这里采用最简单的缩放算法即:
根据比例计算原图和缩放后图坐标的对应关系:缩放后图坐标*缩放比例 = 原图坐标

原始代码 未优化

#pragma once
class zoomBlock
{
public:zoomBlock() {};~zoomBlock();void zoomDataSSE128(unsigned char* dataZoom, float  fXZoom, float fYZoom);void zoomData(unsigned char* dataZoom, float  fXZoom, float fYZoom);void test(float  fXZoom =0.5, float fYZoom=0.5);void init(int DataWidth, int DataHeight);
private:void computeSrcValues(int* srcValues, size_t size, float zoom, int dataSize);private:unsigned char* m_pData = nullptr;float m_fXZoom = 1 ;//x轴缩放比例  m_nXZoom=1时 不缩放float m_fYZoom = 1 ;//y轴缩放比例int m_nDataWidth = 0;int m_nDataHeight = 0;
};#include "zoomBlock.h"
#include <stdio.h>
#include <iostream>
#include<iomanip>
#define SAFE_DELETE_ARRAY(p) { if( (p) != NULL ) delete[] (p); (p) = NULL; }zoomBlock::~zoomBlock()
{SAFE_DELETE_ARRAY(m_pData);
}
void zoomBlock::init(int DataWidth, int DataHeight)
{m_nDataWidth = DataWidth;m_nDataHeight = DataHeight;m_pData = new unsigned char[m_nDataWidth* m_nDataHeight];for (int i = 0; i < m_nDataWidth * m_nDataHeight; ++i){m_pData[i] = static_cast<unsigned char>(i);  // Replace this with your data initialization logic}
}void zoomBlock::zoomData(unsigned char* dataZoom, float  fXZoom, float fYZoom)
{int nZoomDataWidth = fXZoom * m_nDataWidth;int nZoomDataHeight = fYZoom * m_nDataHeight;for (size_t row = 0; row < nZoomDataHeight; row++){for (size_t column = 0; column < nZoomDataWidth; column ++){//1int srcx = std::min(int(row / fYZoom), m_nDataHeight - 1);int srcy = std::min(int(column / fXZoom), m_nDataWidth - 1);//2int srcPos = srcx * m_nDataHeight + srcy;int desPos = row * nZoomDataHeight + column;dataZoom[desPos] = m_pData[srcPos];}}
}void zoomBlock::test(float  fXZoom, float fYZoom)
{init(8,8);std::cout << "Values in m_pData:" << std::endl;for (int i = 0; i < m_nDataWidth * m_nDataHeight; ++i){std::cout << std::setw(4) << static_cast<int>(m_pData[i]) << " ";if ((i + 1) % m_nDataWidth == 0) {  // Adjust the value based on your datastd::cout << std::endl;}}unsigned char* dataZoom = new unsigned char[fXZoom * m_nDataWidth * fYZoom * m_nDataHeight];zoomData(dataZoom, fXZoom, fYZoom);// Print or inspect the values in m_dataZoomint nZoomDataWidth = fXZoom * m_nDataWidth;int nZoomDataHeight = fYZoom * m_nDataHeight;std::cout << "Values in m_dataZoom:" << std::endl;for (int i = 0; i < nZoomDataHeight * nZoomDataWidth; ++i){std::cout << std::setw(4)<< static_cast<int>(dataZoom[i]) << " ";if ((i + 1) % nZoomDataWidth == 0) {  // Adjust the value based on your datastd::cout << std::endl;}}SAFE_DELETE_ARRAY(dataZoom);}

测试代码

int main()
{zoomBlock zoomBlocktest;zoomBlocktest.test(1.5,1.5);return 0;
}

在这里插入图片描述
其中函数
·void zoomBlock::zoomData(unsigned char* dataZoom, float fXZoom, float fYZoom)·
没有使用任何加速优化,现在来分析它。

sse128

我们知道sse128可以一次性处理4个int类型,所以我们把最后一层for循环改成,4个坐标的算法,不满4个的单独计算

void zoomBlock::zoomDataSSE128(unsigned char* dataZoom, float  fXZoom, float fYZoom)
{int nZoomDataWidth = fXZoom * m_nDataWidth;int nZoomDataHeight = fYZoom * m_nDataHeight;for (size_t row = 0; row < nZoomDataHeight; row++){int remian = nZoomDataWidth % 4;for (size_t column = 0; column < nZoomDataWidth - remian; column += 4){//第一个坐标int srcx = std::min(int(row / fYZoom), m_nDataHeight - 1);int srcy = std::min(int(column / fXZoom), m_nDataWidth - 1);int srcPos = srcx * m_nDataHeight + srcy;int desPos = row * nZoomDataHeight + column;dataZoom[desPos] = m_pData[srcPos];//第二个坐标int srcx1 = std::min(int((row+1) / fYZoom), m_nDataHeight - 1);int srcy1 = std::min(int((column+1) / fXZoom), m_nDataWidth - 1);int srcPos1 = srcx1 * m_nDataHeight + srcy1;int desPos1 = (row+1) * nZoomDataHeight + column+1;dataZoom[desPos1] = m_pData[srcPos1];//第3个坐标// 。。。//第4个坐标// 。。。}// Process the remaining elements (if any) without SSEfor (size_t column = nZoomDataWidth - remian; column < nZoomDataWidth; column++){int srcx = std::min(int(row / fYZoom), m_nDataHeight - 1);int srcy = std::min(int(column / fXZoom), m_nDataWidth - 1);int srcPos = srcx * m_nDataHeight + srcy;int desPos = row * nZoomDataHeight + column;dataZoom[desPos] = m_pData[srcPos];}}
}

上面 一次处理四个坐标的代码要改成sse的代码

在最里层的循环里面,每次都要计算 row / fYZoom 和 column / fXZoom,这个实际上可以挪出for循环,计算一次存到数组里

数据坐标desPos和srcPos ,必须放在最内存的循环里

所以我们用calculateSrcIndex函数单独处理 row / fYZoom 和 column / fXZoom,希望达到如下效果:

void calculateSrcIndex(int* srcValues, int size, float zoom,int max)
{for (int i = 0; i < size; i++){srcValues[i] = std::min(int(i/zoom),max);}
}

改成sse:

void calculateSrcIndex(int* srcValues, int size, float zoom,int max)
{__m128i mmIndex, mmSrcValue, mmMax;mmMax = _mm_set1_epi32(max);float zoomReciprocal = 1.0f / zoom;int remian = size % 4;for (size_t i = 0; i < size - remian; i += 4){mmIndex = _mm_set_epi32(i + 3, i + 2, i + 1, i);mmSrcValue = _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(mmIndex), _mm_set1_ps(zoomReciprocal)));// Ensure srcValues are within the valid range [0, max]mmSrcValue = _mm_min_epi32(mmSrcValue, mmMax);// Store the result to the srcValues array_mm_storeu_si128(reinterpret_cast<__m128i*>(&srcValues[i]), mmSrcValue);}// Process the remaining elements (if any) without SSEfor (size_t i = size - remian; i < size; i++){srcValues[i] = std::min(int(i / zoom), max);}
}

解释:
这里主要处理int型数据,为了使用sse加速,要使用__m128i类型来存储4个int

加载int到__m128i:

  1. __m128i _mm_set1_epi32(int i);
    这个指令是使用1个i,来设置__m128i,将__m128i看做4个32位的部分,则每个部分都被赋为i;

  2. __m128i _mm_set_epi32(int i3, int i2,int i1, int i0);
    说明:使用4个int(32bits)变量来设置__m128i变量;
    返回值:如果返回值__m128i,分为r0,r1,r2,r3返回值规则如下:

r0 := i0
r1 := i1
r2 := i2
r3 := i3

  1. __m128i _mm_cvtps_epi32 (__m128 a)
    Converts packed 32-bit integers in a to packed single-precision (32-bit) floating-point elements.

加载float到__m128

  1. __m128 _mm_set1_ps(float w)
    对应于_mm_load1_ps的功能,不需要字节对齐,需要多条指令。(r0 = r1 = r2 = r3 = w)
  2. __m128 _mm_cvtepi32_ps (__m128i a)
    Converts packed 32-bit integers in a to packed single-precision (32-bit) floating-point elements.

float乘法

__m128 dst = _mm_mul_ps (__m128 a, __m128 b)
将a, b中的32位浮点数相乘,结果打包给dst

取最小值

__m128i _mm_min_epi32 (__m128i a, __m128i b)
Compare packed signed 32-bit integers in a and b, and store packed minimum values in dst.
Operation
FOR j := 0 to 3
i := j*32
dst[i+31:i] := MIN(a[i+31:i], b[i+31:i])
ENDFOR

所以代码修改为

	int* srcX = new int[nZoomDataHeight];int* srcY = new int[nZoomDataWidth];calculateSrcIndex(srcX, nZoomDataHeight, fXZoom , m_nDataHeight - 1);calculateSrcIndex(srcY, nZoomDataWidth, fYZoom, m_nDataWidth - 1);for (size_t row = 0; row < nZoomDataHeight; row++){int remian = nZoomDataWidth % 4;for (size_t column = 0; column < nZoomDataWidth - remian; column += 4){//第一个坐标int srcPos = srcX[row] * m_nDataHeight + srcY[column];int desPos = row * nZoomDataHeight + column;dataZoom[desPos] = m_pData[srcPos];...}}

然后把坐标的计算转为sse

void zoomBlock::zoomDataSSE128(unsigned char* dataZoom, float  fXZoom, float fYZoom)
{int nZoomDataWidth = fXZoom * m_nDataWidth;int nZoomDataHeight = fYZoom * m_nDataHeight;int* srcX = new int[nZoomDataWidth];int* srcY = new int[nZoomDataHeight];calculateSrcIndex(srcX, nZoomDataWidth, fXZoom, m_nDataWidth - 1);calculateSrcIndex(srcY, nZoomDataHeight, fYZoom, m_nDataHeight - 1);for (size_t y = 0; y < nZoomDataHeight; y++){int remian = nZoomDataWidth % 4;for (size_t x = 0; x < nZoomDataWidth - remian; x += 4){__m128i mmsrcX = _mm_set_epi32(srcX[x + 3], srcX[x + 2], srcX[x+1], srcX[x]);__m128i srcPosIndices = _mm_add_epi32(_mm_set1_epi32(srcY[y] * m_nDataWidth),mmsrcX);__m128i desPosIndices = _mm_add_epi32(_mm_set1_epi32(y * nZoomDataWidth),_mm_set_epi32(x + 3, x + 2, x + 1, x));dataZoom[desPosIndices.m128i_i32[0]] = m_pData[srcPosIndices.m128i_i32[0]];dataZoom[desPosIndices.m128i_i32[1]] = m_pData[srcPosIndices.m128i_i32[1]];dataZoom[desPosIndices.m128i_i32[2]] = m_pData[srcPosIndices.m128i_i32[2]];dataZoom[desPosIndices.m128i_i32[3]] = m_pData[srcPosIndices.m128i_i32[3]];/*cout << "srcPosIndices: " << srcPosIndices.m128i_i32[0] << " , desPosIndices : " << desPosIndices.m128i_i32[0] << endl;cout << "srcPosIndices: " << srcPosIndices.m128i_i32[1] << " , desPosIndices : " << desPosIndices.m128i_i32[1] << endl;cout << "srcPosIndices: " << srcPosIndices.m128i_i32[2] << " , desPosIndices : " << desPosIndices.m128i_i32[2] << endl;cout << "srcPosIndices: " << srcPosIndices.m128i_i32[3] << " , desPosIndices : " << desPosIndices.m128i_i32[3] << endl;*/}// Process the remaining elements (if any) without SSEfor (size_t x = nZoomDataWidth - remian; x < nZoomDataWidth; x++){int srcy = std::min(int(y / fYZoom), m_nDataHeight - 1);int srcx = std::min(int(x / fXZoom), m_nDataWidth - 1);int srcPos = srcy * m_nDataHeight + srcx;int desPos = y * nZoomDataHeight + x;dataZoom[desPos] = m_pData[srcPos];}}delete[] srcX;delete[] srcY;
}

完整的代码

 #pragma once
class zoomBlock
{
public:zoomBlock() {};~zoomBlock();void zoomDataSSE128(unsigned char* dataZoom, float  fXZoom, float fYZoom);void zoomData(unsigned char* dataZoom, float  fXZoom, float fYZoom);void test(float  fXZoom =0.5, float fYZoom=0.5);void init(int DataWidth, int DataHeight);
private:inline void calculateSrcIndex(int* srcValues, int size, float zoom, int max);private:unsigned char* m_pData = nullptr;float m_fXZoom = 1 ;//x轴缩放比例  m_nXZoom=1时 不缩放float m_fYZoom = 1 ;//y轴缩放比例int m_nDataWidth = 0;int m_nDataHeight = 0;
};#include "zoomBlock.h"
#include <stdio.h>
#include <iostream>
#include<iomanip>
#include<immintrin.h> 
using namespace std;
#define SAFE_DELETE_ARRAY(p) { if( (p) != NULL ) delete[] (p); (p) = NULL; }zoomBlock::~zoomBlock()
{SAFE_DELETE_ARRAY(m_pData);
}
void zoomBlock::init(int DataWidth, int DataHeight)
{m_nDataWidth = DataWidth;m_nDataHeight = DataHeight;m_pData = new unsigned char[m_nDataWidth* m_nDataHeight];for (int i = 0; i < m_nDataWidth * m_nDataHeight; ++i){m_pData[i] = static_cast<unsigned char>(i);  // Replace this with your data initialization logic}
}void zoomBlock::zoomData(unsigned char* dataZoom, float  fXZoom, float fYZoom)
{int nZoomDataWidth = fXZoom * m_nDataWidth;int nZoomDataHeight = fYZoom * m_nDataHeight;for (size_t y = 0; y < nZoomDataHeight; y++){for (size_t x = 0; x < nZoomDataWidth; x ++){//1int srcy = std::min(int(y / fYZoom), m_nDataHeight - 1);int srcx = std::min(int(x / fXZoom), m_nDataWidth - 1);//2int srcPos = srcy * m_nDataWidth + srcx;int desPos = y * nZoomDataWidth + x;dataZoom[desPos] = m_pData[srcPos];}}
}inline void zoomBlock::calculateSrcIndex(int* srcValues, int size, float zoom,int max)
{__m128i mmIndex, mmSrcValue, mmMax;mmMax = _mm_set1_epi32(max);float zoomReciprocal = 1.0f / zoom;int remian = size % 4;for (size_t i = 0; i < size - remian; i += 4){mmIndex = _mm_set_epi32(i + 3, i + 2, i + 1, i);mmSrcValue = _mm_cvttps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(mmIndex), _mm_set1_ps(zoomReciprocal)));// Ensure srcValues are within the valid range [0, max]mmSrcValue = _mm_min_epi32(mmSrcValue, mmMax);// Store the result to the srcValues array_mm_storeu_si128(reinterpret_cast<__m128i*>(&srcValues[i]), mmSrcValue);}// Process the remaining elements (if any) without SSEfor (size_t i = size - remian; i < size; i++){srcValues[i] = std::min(int(i / zoom), max);}
}void zoomBlock::zoomDataSSE128(unsigned char* dataZoom, float  fXZoom, float fYZoom)
{int nZoomDataWidth = fXZoom * m_nDataWidth;int nZoomDataHeight = fYZoom * m_nDataHeight;int* srcX = new int[nZoomDataWidth];int* srcY = new int[nZoomDataHeight];calculateSrcIndex(srcX, nZoomDataWidth, fXZoom, m_nDataWidth - 1);calculateSrcIndex(srcY, nZoomDataHeight, fYZoom, m_nDataHeight - 1);for (size_t y = 0; y < nZoomDataHeight; y++){int remian = nZoomDataWidth % 4;for (size_t x = 0; x < nZoomDataWidth - remian; x += 4){/*int srcPos = srcx * m_nDataHeight + srcy;int desPos = row * nZoomDataHeight + column;*///dataZoom[desPos] = m_pData[srcPos];//__m128i mmsrcY = _mm_loadu_si128((__m128i*)(srcY));__m128i mmsrcX = _mm_set_epi32(srcX[x + 3], srcX[x + 2], srcX[x+1], srcX[x]);__m128i srcPosIndices = _mm_add_epi32(_mm_set1_epi32(srcY[y] * m_nDataWidth),mmsrcX);__m128i desPosIndices = _mm_add_epi32(_mm_set1_epi32(y * nZoomDataWidth),_mm_set_epi32(x + 3, x + 2, x + 1, x));dataZoom[desPosIndices.m128i_i32[0]] = m_pData[srcPosIndices.m128i_i32[0]];dataZoom[desPosIndices.m128i_i32[1]] = m_pData[srcPosIndices.m128i_i32[1]];dataZoom[desPosIndices.m128i_i32[2]] = m_pData[srcPosIndices.m128i_i32[2]];dataZoom[desPosIndices.m128i_i32[3]] = m_pData[srcPosIndices.m128i_i32[3]];/*cout << "srcPosIndices: " << srcPosIndices.m128i_i32[0] << " , desPosIndices : " << desPosIndices.m128i_i32[0] << endl;cout << "srcPosIndices: " << srcPosIndices.m128i_i32[1] << " , desPosIndices : " << desPosIndices.m128i_i32[1] << endl;cout << "srcPosIndices: " << srcPosIndices.m128i_i32[2] << " , desPosIndices : " << desPosIndices.m128i_i32[2] << endl;cout << "srcPosIndices: " << srcPosIndices.m128i_i32[3] << " , desPosIndices : " << desPosIndices.m128i_i32[3] << endl;*/}// Process the remaining elements (if any) without SSEfor (size_t x = nZoomDataWidth - remian; x < nZoomDataWidth; x++){int srcy = std::min(int(y / fYZoom), m_nDataHeight - 1);int srcx = std::min(int(x / fXZoom), m_nDataWidth - 1);int srcPos = srcy * m_nDataHeight + srcx;int desPos = y * nZoomDataHeight + x;dataZoom[desPos] = m_pData[srcPos];}}delete[] srcX;delete[] srcY;
}void zoomBlock::test(float  fXZoom, float fYZoom)
{init(8,4);std::cout << "Values in m_pData:" << std::endl;for (int i = 0; i < m_nDataWidth * m_nDataHeight; ++i){std::cout << std::setw(4) << static_cast<int>(m_pData[i]) << " ";if ((i + 1) % m_nDataWidth == 0) {  // Adjust the value based on your datastd::cout << std::endl;}}int nZoomDataWidth = fXZoom * m_nDataWidth;int nZoomDataHeight = fYZoom * m_nDataHeight;unsigned char* dataZoom = new unsigned char[nZoomDataWidth * nZoomDataHeight];zoomDataSSE128(dataZoom, fXZoom, fYZoom);//zoomData(dataZoom, fXZoom, fYZoom);// Print or inspect the values in m_dataZoomstd::cout << "Values in m_dataZoom:" << std::endl;for (int i = 0; i < nZoomDataHeight * nZoomDataWidth; ++i){std::cout << std::setw(4)<< static_cast<int>(dataZoom[i]) << " ";if ((i + 1) % nZoomDataWidth == 0) {  // Adjust the value based on your datastd::cout << std::endl;}}SAFE_DELETE_ARRAY(dataZoom);}int main()
{zoomBlock zoomBlocktest;zoomBlocktest.test(2,1);return 0;
}

在这里插入图片描述

AVX 256

inline void zoomBlock::calculateSrcIndex256(int* srcValues, int size, float zoom, int max)
{__m256i ymmIndex, ymmSrcValue, ymmMax;ymmMax = _mm256_set1_epi32(max);float zoomReciprocal = 1.0f / zoom;int remian = size % 8;for (size_t i = 0; i < size - remian; i += 8){ymmIndex = _mm256_set_epi32(i + 7, i + 6, i + 5, i + 4, i + 3, i + 2, i + 1, i);ymmSrcValue = _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(ymmIndex), _mm256_set1_ps(zoomReciprocal)));// Ensure srcValues are within the valid range [0, max]ymmSrcValue = _mm256_min_epi32(ymmSrcValue, ymmMax);// Store the result to the srcValues array_mm256_storeu_si256(reinterpret_cast<__m256i*>(&srcValues[i]), ymmSrcValue);}// Process the remaining elements (if any) without AVX2for (size_t i = size - remian; i < size; i++){srcValues[i] = std::min(int(i / zoom), max);}
}
void zoomBlock::zoomDataAVX2(unsigned char* dataZoom, float fXZoom, float fYZoom)
{int nZoomDataWidth = fXZoom * m_nDataWidth;int nZoomDataHeight = fYZoom * m_nDataHeight;int* srcX = new int[nZoomDataWidth];int* srcY = new int[nZoomDataHeight];calculateSrcIndex(srcX, nZoomDataWidth, fXZoom, m_nDataWidth - 1);calculateSrcIndex(srcY, nZoomDataHeight, fYZoom, m_nDataHeight - 1);for (size_t y = 0; y < nZoomDataHeight; y++){int remian = nZoomDataWidth % 8;for (size_t x = 0; x < nZoomDataWidth - remian; x += 8){__m256i ymmSrcX = _mm256_set_epi32(srcX[x + 7], srcX[x + 6], srcX[x + 5], srcX[x + 4],srcX[x + 3], srcX[x + 2], srcX[x + 1], srcX[x]);__m256i srcPosIndices = _mm256_add_epi32(_mm256_set1_epi32(srcY[y] * m_nDataWidth),ymmSrcX);__m256i desPosIndices = _mm256_add_epi32(_mm256_set1_epi32(y * nZoomDataWidth),_mm256_set_epi32(x + 7, x + 6, x + 5, x + 4, x + 3, x + 2, x + 1, x));dataZoom[desPosIndices.m256i_i32[0]] = m_pData[srcPosIndices.m256i_i32[0]];dataZoom[desPosIndices.m256i_i32[1]] = m_pData[srcPosIndices.m256i_i32[1]];dataZoom[desPosIndices.m256i_i32[2]] = m_pData[srcPosIndices.m256i_i32[2]];dataZoom[desPosIndices.m256i_i32[3]] = m_pData[srcPosIndices.m256i_i32[3]];dataZoom[desPosIndices.m256i_i32[4]] = m_pData[srcPosIndices.m256i_i32[4]];dataZoom[desPosIndices.m256i_i32[5]] = m_pData[srcPosIndices.m256i_i32[5]];dataZoom[desPosIndices.m256i_i32[6]] = m_pData[srcPosIndices.m256i_i32[6]];dataZoom[desPosIndices.m256i_i32[7]] = m_pData[srcPosIndices.m256i_i32[7]];}// Process the remaining elements (if any) without AVX2for (size_t x = nZoomDataWidth - remian; x < nZoomDataWidth; x++){int srcy = std::min(int(y / fYZoom), m_nDataHeight - 1);int srcx = std::min(int(x / fXZoom), m_nDataWidth - 1);int srcPos = srcy * m_nDataWidth + srcx;int desPos = y * nZoomDataWidth + x;dataZoom[desPos] = m_pData[srcPos];}}delete[] srcX;delete[] srcY;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/729937.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

每天一个数据分析题(一百九十五)

关于用户标签的分类&#xff0c;下列哪些说法是正确的&#xff1f; A. 属性标签主要包括用户的个人信息&#xff0c;如性别和出生日期&#xff0c;这些数据虽无因果关系&#xff0c;但可以用于预测用户行为。 B. 状态标签反映的是用户的社会经济状态和社会资本&#xff0c;如…

PostgreSQL教程(二十四):服务器管理(六)之数据库角色

PostgreSQL使用角色的概念管理数据库访问权限。一个角色可以被看成是一个数据库用户或者是一个数据库用户组&#xff0c;这取决于角色被怎样设置。角色可以拥有数据库对象&#xff08;例如&#xff0c;表和函数&#xff09;并且能够把那些对象上的权限赋予给其他角色来控制谁能…

代理IP以及动态拨号VPS的关系是什么?

在数字时代&#xff0c;网络安全和隐私保护已成为全球关注的热点话题。代理IP和动态拨号VPS作为提升网络匿名性和安全的重要技术&#xff0c;它们在维护网络隐私中扮演着至关重要的角色。虽然这两种技术在表面上看似相似&#xff0c;实际上它们在功能、应用场景以及用户需求满足…

react + antdesign table组件合并行,展开子表格

假如你有这样的一个数据&#xff1a; [{"bigClass":"吃的","smallClass":"水果","item":"苹果"},{"bigClass":"吃的","smallClass":"水果","item":"香蕉…

mutex 和 channel 哪一个工作效率更高?

关于Rust中mutex和channel哪一个工作效率更高的问题&#xff0c;实际上并没有一个绝对的答案&#xff0c;因为效率的高低取决于具体的使用场景和需求。 互斥锁&#xff08;mutex&#xff09;主要用于保护共享资源&#xff0c;确保一次只有一个线程可以访问它。当需要多个线程同…

这些养老难题,只能靠AI来解决了

3 月 5 日刚召开的两会&#xff0c;AI 这个话题妥妥站上了 C 位。不仅政府工作报告首次提出要开展“人工智能”行动&#xff0c;各路科技大佬和人大代表也是围绕着 AI 大模型的技术创新、应用落地和政策法规&#xff0c;展开了热烈积极的建言献策。甚至有互联网大佬建议将人工智…

创建RAID0,RAID5并管理,热备盘,模拟故障

目录 1. RAID介绍以及mdadm安装 1.1 安装mdadm工具 2. 创建raid0 2.1 环境准备 2.2 使用两个磁盘创建RAID0 2.3 查看RAID0信息 2.4 对创建的RAID0进行格式化并挂载 2.5 设置成开机挂载 2.6 删除RAID0 3. 创建raid5 3.1 环境准备 3.2 用3个磁盘来模拟R…

2024-01 STEMA 考试C++ 中级真题解析

2024-01 STEMA 考试C++ 中级真题一、选择题 第一题、表达式117 % 16 的结果是( B )。 A、0 B、5 C、7 D、10第二题、下列选项中,字符数组定义正确的是(B )。 A、char a[5] = "hello"; B、char a[ ] = "hello"; …

Go微服务: 基于net/rpc/jsonrpc模块实现微服务跨语言调用

概述 Golang 提供 net/rpc/jsonrpc 库来实现rpc方法采用 json 方式进行数据编解码&#xff0c;支持跨语言调用 这里实现跨语言示例 1 &#xff09;go 服务端 package main import ( "log" "net" "net/rpc" "net/rpc/jsonrpc" )…

ERC20学习

ERC20简介 ERC20是一种代币标准&#xff0c;用于创建可替代的代币。 ERC20是在以太坊网络上实现的代币标准&#xff0c;它为数字资产或代币定义了一套规则和接口。这些符合ERC20标准的代币在性质上是完全相同的。即每一个代币都可以被另一个同类型的代币替代&#xff0c;这种属…

系统架构30 - 质量属性

质量属性 概念开发期质量属性运行期质量属性 面向架构评估的质量属性质量属性场景描述 软件系统属性包括功能属性和质量属性&#xff0c;软件架构重点关注的是质量属性。架构的基本需求是在满足功能属性的前提下&#xff0c;关注软件系统质量属性。为了精确、定量地表达系统的质…

代码随想录算法训练营day54| 392. 判断子序列、115. 不同的子序列

392、判断子序列&#xff1a; class Solution(object):def isSubsequence(self, s, t):""":type s: str:type t: str:rtype: bool"""dp [[0] * (len(t)1) for _ in range(len(s)1)]for i in range(1, len(s)1):for j in range(1, len(t)1):if …

社区店选址评估的关键指标:确保商业成功的重要因素

对于想开实体店或创业的人来说&#xff0c;选址是决定商业成功的关键因素之一。作为一名开鲜奶吧5年的创业者&#xff0c;我在网上持续分享开店的干货和见解。 在这篇文章中&#xff0c;我将详细介绍社区店选址评估的关键指标&#xff0c;帮助你确保商业成功。 1、人流量&…

js之版本号排序

版本号排序 给定一个由版本号组成的数组&#xff0c;按照版本号由小到大排序 假如版本号如下 &#xff1a; ["0.1.1", "2.3.3", "0.302.1", "4.2", "4.3.5", "4.3.4.5"];原理很简单&#xff0c;通过自定义sort排…

2.DOM-事件基础(注册事件、tab栏切换)(案例:注册、轮播图)

案例 注册事件 <!-- //disabled默认情况用户不能点击 --><input type"button" value"我已阅读用户协议(5)" disabled><script>// 分析&#xff1a;// 1.修改标签中的文字内容// 2.定时器// 3.修改标签的disabled属性// 4.清除定时器// …

如何在Windows上使用Docker,搭建一款实用的个人IT工具箱It- Tools

文章目录 1. 使用Docker本地部署it-tools2. 本地访问it-tools3. 安装cpolar内网穿透4. 固定it-tools公网地址 本篇文章将介绍如何在Windows上使用Docker本地部署IT- Tools&#xff0c;并且同样可以结合cpolar实现公网访问。 在前一篇文章中我们讲解了如何在Linux中使用Docker搭…

设计模式(十):抽象工厂模式(创建型模式)

Abstract Factory&#xff0c;抽象工厂&#xff1a;提供一个创建一系列相关或相互依赖对 象的接口&#xff0c;而无须指定它们的具体类。 之前写过简单工厂和工厂方法模式(创建型模式)&#xff0c;这两种模式比较简单。 简单工厂模式其实不符合开闭原则&#xff0c;即对修改关闭…

[MYSQL]当数据库被攻破如何重新恢复

前情提要&#xff1a;mysql数据库默认密码、默认端口没有改&#xff0c;也没做安全防护&#xff0c;导致被攻破被索要比特币。 那我们自然是不能给他们的&#xff0c;下面罗列我的补救方法。 密码修改相关 第一步大家自然都会想到先去修改密码&#xff1a; mysqladmin -u roo…

光谱下的养殖业:数据可视化的现代变革

在数字化时代&#xff0c;数据可视化在养殖业中崭露头角&#xff0c;为这一传统行业注入了新的活力。无论是家禽养殖还是水产养殖&#xff0c;数据可视化都以其直观、高效的特点&#xff0c;为养殖业带来了全新的发展机遇。下面我就以可视化从业者的角度&#xff0c;简单聊聊这…

腾讯云轻量 2核2G4M新用户首购活动,99续费同价来了!!

阿里云199一年续费同价&#xff0c;腾讯云99一年续费同价&#xff0c;平台卷起来&#xff0c;对用户的角度来说&#xff0c;真的是香麻了~ 腾讯云新春采购节&#xff0c;2核2G4兆的基础配置&#xff0c;新官方直接放大招&#xff0c;99一年&#xff0c;活动期间内&#xff0c;…