考虑到通信链路中断的(Delay Tolerant Network, DTN)

文章目录

  • A Study of DTN for Reliable Data Delivery from Space Station to Ground Station
    • abstract
    • introduction
  • An Analytical Framework for Disruption of Licklider Transmission Protocol in Mars Communications
    • abstract
      • 本文贡献
    • OVERVIEW OF RELIABLE DATA TRANSMISSION OF LTP
    • 链路中断对 LTP 影响的分析模型

A Study of DTN for Reliable Data Delivery from Space Station to Ground Station

abstract

— 延迟/中断容忍网络 (DTN) 是一种网络技术,旨在管理没有一致的端到端链路连接的机会性连接,这在地面和太空通信环境中很常见。 DTN 被认为是实现深空网络的基线技术。 Licklider 传输协议 (LTP) 被视为太空中 DTN 的主要传输协议,无论是否存在随机链路中断和/或极长的传播延迟,都有望在充满挑战的网络环境中提供可靠的数据传输服务。美国国家航空航天局 (NASA) 已在国际空间站 (ISS) 上使用 DTN 协议向地球地面站传输数据。然而,在研究 LTP 在这种通信环境中可靠的数据/文件传输的性能方面所做的工作还很少,特别是在存在链路中断的情况下。 LTP 在空间站通信中的应用缺乏可靠的性能评估。本文提出了一个分析框架来评估 LTP 在空间站和地面站之间可靠文件传输的性能,重点关注可能发生在下行链路或上行链路上的链路中断的影响。还集成了由于通道错误导致的数据丢失的影响。使用基于 PC 的实验基础设施进行真实的数据块传输实验,以验证分析模型。

introduction

人们普遍认为,极长的信号传播延迟、长时间且频繁的链路中断、高数据丢失率和高度不对称的信道速率是降低深空链路数据传输性能的主要因素。延迟/中断容忍网络 (DTN) [1] 是作为实现星际深空网络 [2] 的基线网络技术而开发的。作为DTN协议栈的核心“叠加”协议,捆绑协议(BP)[3]旨在为DTN中基于托管的数据传输服务构建“存储转发”叠加网络。 BP 通过调用称为“汇聚层适配器”(CLA)的接口服务来利用底层网络的传输协议。 CLA 反过来在所谓的“汇聚层”上运行底层数据传输协议栈。

针对太空中 DTN 的主要传输协议,Licklider 传输协议 (LTP) [4]、[5] 预计能够在具有挑战性的网络环境中提供可靠的数据传输,无论是否存在随机链路中断和/或极长的传播延迟。与普遍使用的传输控制协议(TCP)一样,LTP 实现基于自动重复请求(ARQ)的重传方案。然而,LTP以连续的方式实现其基本协议数据单元protocol data units(PDU)(即块)的多个并发传输[5],而不需要等待确认(ACK)。此外,为了满足各种应用需求,LTP还提供了选择性的数据传输服务:用户可以选择TCP类型的可靠传送服务或UDP类型的不可靠传送服务。

虽然DTN的最初意图主要是针对链路时延极长的深空通信,但当链路时延不是很长时,DTN协议也因其对频繁或随机间歇性链路连接的场景的有效容忍而受到业界的广泛认可。 ,甚至通过地面链路。这种应用的一个典型例子是从国际空间站(ISS)到地面站的可靠数据传输[6],因为地面站的数量和位置无法保证天地连续链路连通。在国际空间站通信中,由于地面站数量不足,不可能与地面站持续直接联系。因此,主空间站通信系统被设计为基于中继的架构——数据下行链路路径通过在更高的地球静止轨道(GEO)上运行的高带宽弯管卫星进行中继[7]。即使采用基于中继的架构,中继卫星联系窗口之间也可能存在连接故障。此外,由于大气和太阳天气事件等因素,也可能随机发生链路中断。

在卫星和空间网络的研究和开发方面已经开展了大量工作[8]-[12]。在将 DTN 概念应用于偏远地区连接和监视方面已经开展了一些工作,其中一些工作采用了纳米卫星和基于 WiFi 的无人机 [13]、[14]。 [15] 中介绍了卫星 DTN 的研究,重点关注基于卫星的网络场景。在这些场景中,无论是单播还是组播卫星通信场景,DTN的采用都显着提高了数据传输效率。然而,由于通信环境的差异,这些研究的大多数结果并不适用于国际空间站通信中可靠的文件/数据传输。

作为一种基于 UDP 的多路复用和安全传输协议,快速 UDP 互联网协议 (QUIC) [16] 引起了互联网社区的广泛关注。 QUIC 为结构化通信和快速连接建立提供流量控制流的传输服务。它已被考虑用于包括卫星通信在内的广泛应用。 QUIC 作为空间站和卫星通信在链路中断时的可能解决方案的性能评估正在进行中。

NASA喷气推进实验室(JPL)和其他学术团体联合做出了一些努力,在空间网络中运用DTN协议,包括BP[17]-[27]及其主要传输协议LTP[28]-[35]。然而,在大多数 LTP 研究中,链路中断的影响要么被忽略,要么被假定为传输时间的恒定偏移,即,链路中断持续时间只是简单地添加到总文件/数据传输时间中,而没有进行详细分析它如何真正影响数据块交付和传输性能。此外,简单地将中断持续时间添加到基线交付时间是块交付时间的非常粗略的近似值,这可能无法准确地表征 LTP 的性能。在[35]中,提出了火星通信中 LTP 的单链路中断事件影响的理论框架。

NASA 已在国际空间站上使用 DTN 协议将数据传输到地球地面站 [6]。文章 [36] 中还介绍了使用基于 PC 的测试台基础设施收集的一些初步实验结果,这些结果涉及 LTP 在链路中断的情况下从空间站到地面站可靠传输数据的性能。

然而,在分析 LTP 从空间站到地面站的可靠数据/文件传输的性能方面,特别是在存在链路中断的情况下,很少进行分析/建模工作。需要一个分析框架来对 LTP 进行可靠的性能评估,以实现空间站和地面站之间可靠的文件传输。

An Analytical Framework for Disruption of Licklider Transmission Protocol in Mars Communications

abstract

作为延迟/中断容忍网络(DTN)的主要数据传输协议之一,Licklider 传输协议(LTP)旨在在以频繁且长时间的链路中断和极长的信号传播为特征的星际互联网环境中提供可靠的数据传输延误。人们已经对 LTP 在地月和火星通信中的性能进行了一些研究。然而,迄今为止,链路中断对火星通信 LTP 的影响很少受到关注。本文提出了一个分析框架,用于分析链路中断对火星通信中 LTP 可靠数据传输和性能的影响。该分析重点关注各种链路中断如何影响传输尝试次数、随后的数据交换往返时间 (RTT),以及在火星通信中实现可靠数据块传输的 LTP 良好输出性能。该分析框架通过使用基于 PC 的实验基础设施进行的实际数据块传输实验进行了验证,并且可用于预测在存在链路中断的情况下深空飞行器通信通道上的 LTP 性能。

本文贡献

在之前类似的 LTP 研究中,假设链路中断对传输性能具有不变的影响,即中断持续时间只需添加到总文件/数据传输时间中。本文研究了链路中断对LTP的影响,对随机起始时间和任意持续时间的链路中断进行了具体分析。提出了一个分析框架,用于分析随机链路中断对火星通信中 LTP 可靠数据传输和性能的影响。该研究重点分析各种链路中断如何影响传输尝试次数以及随后的数据交换往返时间 (RTT) ,以及由此产生的 LTP 可靠数据块传输的良好输出性能。该框架通过使用基于 PC 的实验测试台基础设施的实际数据块传输实验进行了验证。

据我们所知,本文提出了该问题的第一个分析框架,并结合了链路中断对火星通信中 LTP 可靠数据传输影响的实验结果。该框架对于表征链路中断时 LTP 的操作和传输性能非常有用。使用分析和实验方法收集的定量结果预计将有助于协议配置和 LTP 的优化设计,以便在未来的火星和其他深空飞行任务中实现高度可靠和高效的数据传输。

OVERVIEW OF RELIABLE DATA TRANSMISSION OF LTP

如所讨论的,LTP可以被配置为通过将块(全部或部分)配置为“红色”部分和/或“绿色”部分来向数据块提供可靠传输服务和/或不可靠传输服务。对于设置为红色的新块的传输,在接收到来自客户端服务的块传输请求时,发送方根据底层链路最大传输单元(MTU)大小将块分割为多个红色LTP数据段以进行传输。发送方将最后一个数据段标记为异步检查点(CP)、红色部分结束(EORP)和块结束(EOB)[5]。 CP 定时器在排队的 CP 段被传输后启动。

可以从LTP接收器接收报告段(RS),请求重传未成功接收的数据段。如果 RS 指示数据块接收不完整(即,由于任何原因导致数据丢失),LTP 发送方将重新传输丢失的数据段。这些丢失的分段中的最后一个将作为 CP 重新传输。否则,如果RS指示成功接收到所有红色数据,则LTP发送方通过发送报告确认(RA)段来确认它。另一个中断 LTP 发送方的事件是先前设置的 CP 定时器到期 [4]。在这种情况下,需要重新启动CP段并启动新的定时器,并且LTP发送方返回到中断状态。

继上面对LTP可靠传输机制的简单描述之后,图1比较了“红色”数据块的LTP传输的两种场景。由于本研究主要关注链路中断的影响,因此场景适用于没有链路中断的传输(即图 1(a))或经历过链路中断的传输(即图 1(b))。为了简单起见,示出了每个块仅被分段为四个段以进行传输。

对于图1(a)中没有链路中断的LTP一般传输场景,交互传输过程遵循上述流程和算法。块的所有分段均以连续方式传输,最后一个分段标记为 CP/EORP/EOB。假设没有发生链路中断和信道错误,传输过程中不会发生数据丢失,并且所有数据段都在接收器处成功接收。然后,接收器发送 RS 以确认 CP 段和整个块的成功接收。作为响应,发送方向接收方发送 RA,从而结束整个块的传输。

对于图1(b)中存在链路中断的情况,与图1(a)中的情况类似,块的所有四个段都以连续方式传输。 CP 定时器在 CP 段被发送时启动。然而,最后一个段(即CP段)在传输过程中遇到链路中断并丢失。换句话说,由于链路中断,同步CP段没有在接收器处传送,因此,不应期望其相应的RS段到达发送器。

请注意,在链路中断期间,当先前设置的 CP 定时器到期时,将重新发送 CP 段。根据链路中断的持续时间,CP 段可能会重新发送多次,直到感知到链路已恢复。因此,链路中断事件对总块传送时间的时间贡献可以简单地估计为CP定时器长度和发送次数的乘积。

一旦数据链路恢复,最后重新发送的 CP 段就会成功传送到接收器。随着 CP 段成功传送,该块的所有四个段都被接收器成功接收。作为响应,接收器发送 RS,确认接收到先前发送的 CP 段。假设 RS 在发送方成功传递,它可以向发送方指示整个块已成功传递。然后,发送方发送 RA 作为响应,标志着块传输的结束,如图 1(a)所示。

在这里插入图片描述

链路中断对 LTP 影响的分析模型

本节介绍了链路中断对火星通信 LTP 影响的分析模型。表 I 列出了建模过程中使用的符号。这些模型是基于我们之前的工作 [20] 中开发的空间通信中 LTP 运行的系统模型构建的。

在这里插入图片描述
请注意,通道误差对 LTP 的影响已得到广泛研究 [21]、[23]、[25] 和 [29]。如果本研究中也考虑信道错误的影响,那么除了单独分析每个因素的影响之外,还需要仔细分析链路中断和信道错误的相互作用。这将使分析变得更加复杂;这项研究超出了本文的范围。为了准确分析链路中断对 LTP 的影响,本研究忽略了信道错误的影响;也就是说,假设所有数据丢失以及由此产生的额外文件传送时间都是由于链路中断事件导致数据链路不可用而发生的。

令ΔRTTDisrupt表示链路中断对LTP数据块传送的时间影响,即链路中断导致的RTT增量。这个效应可以写成

Δ R T T Disrupt  = R T T − R T T 0 \Delta R T T_{\text {Disrupt }}=R T T-R T T_{0} ΔRTTDisrupt =RTTRTT0

其中RTT是在存在链路中断的情况下LTP块传送的估计RTT,并且RTT0是在不存在链路中断的情况下LTP块传送的基线RTT。

[20]中提出的系统模型主要是为了估计LTP的RTT而建立的,这里重新回顾一下

Q. Yu et al., “Modeling RTT for DTN protocols over asymmetric cislunar
space channels,” IEEE Syst. J., vol. 10, no. 2, pp. 556–567, Jun. 2016.

R T T = 2 × T O W L T + T Block  + T R S + Δ R T T Disrupt  = 2 × T OWLT  + ( L Seg  + L Frame-Head  ) R Data  × ⌈ N Bundle  × ( L Bundle  + L Bundle-Head  ) L Seg  ⌉ + L R S R A C K + Δ R T T Disrupt  \begin{aligned} R T T= & 2 \times T_{O W L T}+T_{\text {Block }}+T_{R S}+\Delta R T T_{\text {Disrupt }} \\ = & 2 \times T_{\text {OWLT }}+\frac{\left(L_{\text {Seg }}+L_{\text {Frame-Head }}\right)}{R_{\text {Data }}} \\ & \times\left\lceil\frac{N_{\text {Bundle }} \times\left(L_{\text {Bundle }}+L_{\text {Bundle-Head }}\right)}{L_{\text {Seg }}}\right\rceil \\ & +\frac{L_{R S}}{R_{A C K}}+\Delta R T T_{\text {Disrupt }} \end{aligned} RTT==2×TOWLT+TBlock +TRS+ΔRTTDisrupt 2×TOWLT +RData (LSeg +LFrame-Head )×LSeg NBundle ×(LBundle +LBundle-Head )+RACKLRS+ΔRTTDisrupt 

这段代码描述了LTP(Licklider Transmission Protocol)协议中往返时延( R T T RTT RTT)的计算方式。LTP是一种用于延迟容忍型网络的协议,通常用于对抗高延迟、不可靠、带宽有限的网络环境,比如深空通信。

具体来说,这段代码中的符号表示了以下内容:

  • R T T RTT RTT:往返时延
  • T O W L T T_{OWLT} TOWLT:单向链路传输时延(One-Way Link Transmission Time)
  • T B l o c k T_{Block} TBlock:块处理时延
  • T R S T_{RS} TRS:接收段(Receiver Segment)处理时延
  • Δ R T T D i s r u p t \Delta RTT_{Disrupt} ΔRTTDisrupt R T T RTT RTT中的中断时间
  • L S e g L_{Seg} LSeg:分段长度
  • L F r a m e − H e a d L_{Frame-Head} LFrameHead:帧头长度
  • R D a t a R_{Data} RData:数据传输速率
  • N B u n d l e N_{Bundle} NBundle:捆绑数
  • L B u n d l e L_{Bundle} LBundle:捆绑长度
  • L B u n d l e − H e a d L_{Bundle-Head} LBundleHead:捆绑头部长度
  • R A C K R_{ACK} RACK:ACK(确认应答)传输速率
  • L R S L_{RS} LRS:接收段长度

这段代码的目的是计算从发送到接收并收到确认应答所需的总时延。

以下是前面关于公式计算细节的对话,使用了 A A A格式表示数学字符:

好的,让我来解释一下这个公式中的计算细节。

  1. 单向链路传输时延 ( T O W L T T_{OWLT} TOWLT):
    这个时延是指从发送端发送数据到接收端接收到数据所需的时间。它可以通过数据的大小除以发送速率来计算。公式中表示为 T O W L T = L S e g + L F r a m e − H e a d R D a t a T_{OWLT} = \frac{L_{Seg} + L_{Frame-Head}}{R_{Data}} TOWLT=RDataLSeg+LFrameHead,其中 L S e g L_{Seg} LSeg是数据分段的长度, L F r a m e − H e a d L_{Frame-Head} LFrameHead是帧头的长度, R D a t a R_{Data} RData是数据传输速率。

  2. 数据段分段及捆绑影响:
    数据段可能会被分段,并且多个数据段可能会被捆绑在一起传输,这可能会影响传输时延。具体地,分段后的数据段数量为 ⌈ N B u n d l e × ( L B u n d l e + L B u n d l e − H e a d ) L S e g ⌉ \lceil\frac{N_{Bundle} \times (L_{Bundle}+L_{Bundle-Head})}{L_{Seg}}\rceil LSegNBundle×(LBundle+LBundleHead),其中 N B u n d l e N_{Bundle} NBundle是捆绑数, L B u n d l e L_{Bundle} LBundle是捆绑长度, L B u n d l e − H e a d L_{Bundle-Head} LBundleHead是捆绑头部长度。

  3. 接收段处理时延 ( T R S T_{RS} TRS):
    这个时延是指接收端处理数据段的时间,包括接收数据、解析数据、执行相应的操作等。公式中表示为 T R S = L R S R A C K T_{RS} = \frac{L_{RS}}{R_{ACK}} TRS=RACKLRS,其中 L R S L_{RS} LRS是接收段的长度, R A C K R_{ACK} RACK是确认应答传输速率。

  4. R T T RTT RTT中的中断时间 ( Δ R T T D i s r u p t \Delta RTT_{Disrupt} ΔRTTDisrupt):
    这个是考虑到在往返时延过程中可能发生的中断时间,例如网络拥塞、丢包等引起的中断。

综上所述,公式中的每一项都代表了数据传输过程中的一个重要因素,通过这些因素的考虑,可以更准确地估计数据传输的总时延。

All the terms in (2) are defined in Table I.

The baseline RTT0 in (1) can be formulated as

R T T 0 = T B l o c k + 2 T O W L T + T R S R T T_{0}=T_{B l o c k}+2 T_{O W L T}+T_{R S} RTT0=TBlock+2TOWLT+TRS

在这里插入图片描述

RTO 是 TCP 协议中的一个重要概念,代表重传超时(Retransmission TimeOut)。在 TCP 协议中,当发送方发送数据包后,会等待接收方的确认应答(ACK),如果在一定的时间内未收到确认应答,就会认为数据包丢失了,此时就会触发 RTO,即重传超时机制,发送方会重新发送相同的数据包。

RTO 的值是根据网络状况动态调整的,通常受到往返时延(RTT)、网络拥塞等因素的影响。当网络延迟较高或者出现拥塞时,RTO 的值会增加,以减少误判丢包情况,提高传输的可靠性。反之,当网络状况良好时,RTO 的值会减小,以提高数据传输的效率。

总的来说,RTO 在 TCP 协议中起到了重要的作用,帮助发送方适应不同的网络环境,保证数据的可靠传输。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/729798.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

资源池化单集群安装经验总结

登录linux环境通过跳板机用ssh命令连接分配的ip,将准备好的openGauss安装包以及xml文件上传到跳板机用scp命令传到自己的节点。 问题1:预安装包版本问题 解决方法:查看自己机器的系统,至openGauss官网下载正确版本的安装包 open…

Java使用spire.doc操作word文档(合并、插入文字图片和表格、替换书签)

一、引入依赖 <dependency><groupId>e-iceblue</groupId><artifactId>spire.office</artifactId><version>7.5.4</version> </dependency> 二、word操作 1、合并word文档 import com.spire.doc.Document; import com.spir…

目标检测——摩托车头盔检测数据集

一、简介 首先&#xff0c;摩托车作为一种交通工具&#xff0c;具有高速、开放和稳定性差的特点&#xff0c;其事故发生率高&#xff0c;伤亡率排在机动车辆损伤的首位。因此&#xff0c;摩托车乘员头盔对于保护驾乘人员头部安全至关重要。在驾乘突发状况、人体受冲击时&#…

#14vue3生成表单并跳转到外部地址的方式

1、背景 后端返回的json数据中包含一个json数组&#xff0c;此数组中是目标跳转地址所需要的form表单的数据。 2、跳转前的页面 const goto () > {finish.value true;request.post(/xxx/yyy,{zzz: zzz.value}).then(res > {const url res.data.submitUrlconst params…

在线安装MySQL5.7

在线安装MySQL 安装MySQL5.7 yum -y install mysql57-community-release-el7-10.noarch.rpm 若无可用安装包&#xff0c;执行下面这句 wget http://dev.mysql.com/get/mysql57-community-release-el7-7.noarch.rpm 本地安装 yum localinstall -y mysql57-community-releas…

python异常机制

当代码出现异常后底下代码都不会被执行了&#xff0c;也就是程序崩溃了。当然能避免异常的话尽量避免但是有的时候这个是没有办法避免的。 异常处理 &#xff08;注&#xff1a;异常处理是从上往下处理&#xff0c;所以编写代码时要注意&#xff09; 语法 try:可能出现异常…

【漏洞复现】锐捷 EWEB auth 远程命令执行漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

力扣面试经典150 —— 6-10题

力扣面试经典150题在 VScode 中安装 LeetCode 插件即可使用 VScode 刷题&#xff0c;安装 Debug LeetCode 插件可以免费 debug本文使用 python 语言解题&#xff0c;文中 “数组” 通常指 python 列表&#xff1b;文中 “指针” 通常指 python 列表索引 文章目录 6. [中等] 轮转…

MySQL基础-----约束

目录 前言 一、概述 二、约束演示 三、外键约束 1.介绍 2.语法 四、删除/更新行为 1.CASCADE 2.SET NULL 前言 本期我们开始MySQL约束的学习&#xff0c;约束一般是只数据键对本条数据的约束&#xff0c;通过约束我们可以保证数据库中数据的正确、有效性和完整性。 下面…

vite+vue3门户网站菜单栏动态路由控制

门户网站用户端需要分板块展示&#xff0c;板块内容由管理端配置&#xff0c;包括板块名称&#xff0c;访问路径&#xff0c;路由组件&#xff0c;展示顺序&#xff0c;是否展示。如下图所示&#xff1a; 用户访问门户网站时&#xff0c;展示菜单跳转通过板块配置&#xff0c;动…

#微信小程序(布局、渲染层基础知识)

1.IDE&#xff1a;微信开发者工具 2.实验&#xff1a; 3.记录: &#xff08;1&#xff09;view&#xff08;类似于div&#xff09; &#xff08;2&#xff09;块级元素不占满一行且水平均分布局flex,justify(space-around) &#xff08;3&#xff09;滚动<scroll view sc…

从破局到引领,小牛电动确立“领航者”地位

一代人有一代人的使命&#xff0c;一代名企也有一代名企的长征。 当下&#xff0c;高端智能两轮电动车正在跨越鸿沟进入到主流市场中&#xff0c;其中&#xff0c;以小牛电动为代表的新势力正在经历由“颠覆者”到扮演“领航者”角色转型&#xff0c;引领市场顺势而上。 不破…

C++:string的介绍

C语言中&#xff0c;字符串是以\0结尾的一些字符的集合&#xff0c;为了操作方便&#xff0c;C标准库中提供了一些str系列的库函数&#xff0c;但是这些库函数与字符串是分离开的&#xff0c;不太符合面向对象的思想&#xff0c;而且底层空间需要用户自己管理&#xff0c;稍不留…

浅谈去耦电容的作用、选择、布局及其它电容的区别!

在一些文章资料中&#xff0c;去耦电容器被认为是旁路电容器。在其他资料中&#xff0c;去耦电容和旁路电容的区别在于&#xff1a;“旁路电容以输入信号中的干扰为滤波对象&#xff0c;而去耦电容以输出信号的干扰为滤波对象&#xff0c;防止干扰信号返回到输出端。”力量。”…

基于Java的生活废品回收系统(Vue.js+SpringBoot)

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容三、界面展示3.1 登录注册3.2 资源类型&资源品类模块3.3 回收机构模块3.4 资源求购/出售/交易单模块3.5 客服咨询模块 四、免责说明 一、摘要 1.1 项目介绍 生活废品回收系统是可持续发展的解决方案&#xff0c;旨在鼓…

如何远程访问电脑文件?

远程访问电脑文件是当今数字化时代中十分常见且实用的技术。它允许我们从任何地方的计算机或移动设备访问和操作我们的电脑中的文件。无论是远程工作、远程学习、远程协作还是方便地获得自己计算机上的重要文件&#xff0c;远程访问电脑文件都为我们提供了巨大的便利。 在远程访…

【C++】stack/queue

链表完了之后就是我们的栈和队列了&#xff0c;当然我们的STL中也有实现&#xff0c;下面我们先来看一下简单用法&#xff0c;跟我们之前C语言实现的一样&#xff0c;stack和queue有这么几个重要的成员函数 最主要的就是这么几个&#xff1a;empty&#xff0c;push&#xff0c;…

LeetCode-91题:解码方法(原创)

【题目描述】 一条包含字母 A-Z 的消息通过以下映射进行了 编码 &#xff1a; A -> "1" B -> "2" ... Z -> "26" 要 解码 已编码的消息&#xff0c;所有数字必须基于上述映射的方法&#xff0c;反向映射回字母&#xff08;可能有多种…

如何获取国外信用卡?需要国外银行卡支付怎么解决?如何订阅国外产品?

当国内的用户想要使用国外的产品时&#xff0c;很多产品是需要订阅付费的。其中有些产品还没有引入国内&#xff0c;只能用国外的信用卡支付&#xff0c;对于在国内的朋友&#xff0c;如何获取一张国外的信用卡呢&#xff1f; 这里推荐一个平台&#xff1a;wildCard waildCard…

2核4g服务器能支持多少人访问?并发数性能测评

2核4g服务器能支持多少人访问&#xff1f;支持80人同时访问&#xff0c;阿腾云使用阿里云2核4G5M带宽服务器&#xff0c;可以支撑80个左右并发用户。阿腾云以Web网站应用为例&#xff0c;如果视频图片媒体文件存储到对象存储OSS上&#xff0c;网站接入CDN&#xff0c;还可以支持…