Python与FPGA——图像锐化

文章目录

  • 前言
  • 一、图像锐化
  • 二、Python robert锐化
  • 三、Python sobel锐化
  • 四、Python laplacian锐化
  • 五、FPGA sobel锐化
  • 总结


前言

  在增强图像之前一般会先对图像进行平滑处理以减少或消除噪声,图像的能量主要集中在低频部分,而噪声和图像边缘信息的能量主要集中在高频部分。因此,平滑处理会使原始的图像边缘和轮廓变得模糊。为了减少不利效果的影响,需要利用图像锐化技术。


一、图像锐化

  图像锐化其实就是使用robert,sobel,laplacian这些人发明的窗口,进行图像的处理。图像锐化过程和sobel边缘检测的过程类似,可以移步至《Python与FPGA——sobel边缘检测》课程,一探究竟。

一阶微分的边缘检测
  图像f(x, y)在像素(x, y)梯度的定义为
G = ∂ f ∂ x + ∂ f ∂ y G = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} G=xf+yf
也可以用差分来替代微分,即
∂ f ∂ x = f ( i + 1 , j ) − f ( i , j ) \frac{\partial f}{\partial x} = f(i + 1, j) - f(i, j) xf=f(i+1,j)f(i,j)
∂ f ∂ y = f ( i , j + 1 ) − f ( i , j ) \frac{\partial f}{\partial y} = f(i, j + 1) - f(i, j) yf=f(i,j+1)f(i,j)
梯度的幅值即模值,为
∣ G ∣ = ( ∂ f ∂ x ) 2 + ( ∂ f ∂ y ) 2 = [ f ( i + 1 , j ) − f ( i , j ) ] 2 + [ f ( i , j ) − f ( i , j ) ] 2 |G| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2} = \sqrt{[f(i + 1, j) - f(i, j)]^2 + [f(i, j ) - f(i, j)]^2} G=(xf)2+(yf)2 =[f(i+1,j)f(i,j)]2+[f(i,j)f(i,j)]2
梯度方向为
θ = a r c t a n ( ∂ f ∂ y / ∂ f ∂ x ) = a r c t a n [ f ( i , j + 1 ) − f ( i , j ) f ( i + 1 , j ) − f ( i , j ) ] \theta = arctan(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}) = arctan[\frac{f(i, j + 1) - f(i, j)}{f(i + 1, j) - f(i, j)}] θ=arctan(yf/xf)=arctan[f(i+1,j)f(i,j)f(i,j+1)f(i,j)]
图像f(i, j)处的梯度g为
g ( i , j ) = G [ f ( i , j ) ] g(i, j) = G[f(i, j)] g(i,j)=G[f(i,j)]
使用 g ( i , j ) g(i, j) g(i,j)去替代原来的像素。
  一阶导算子有robert算子,perwitt算子,sobel算子。
1. Roberts算子
G x = [ 1 0 0 − 1 ] G y = [ 0 − 1 1 0 ] G_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad\quad\quad G_y = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} Gx=[1001]Gy=[0110]
2. Prewitt算子
G x = [ − 1 0 1 − 1 0 1 − 1 0 1 ] G y = [ − 1 − 1 − 1 0 0 0 1 1 1 ] G_x = \begin{bmatrix} -1 & 0 & 1\\ -1 & 0 & 1\\ -1 & 0 & 1 \end{bmatrix} \quad\quad\quad G_y = \begin{bmatrix} -1 & -1 & -1\\ 0 & 0 & 0\\ 1 & 1 & 1 \end{bmatrix} Gx=111000111Gy=101101101
3. Sobel算子
G x = [ − 1 0 + 1 − 2 0 + 2 − 1 0 + 1 ] G y = [ + 1 + 2 + 1 0 0 0 − 1 − 2 1 ] G_x = \begin{bmatrix} -1 & 0 & +1\\ -2 & 0 & +2\\ -1 & 0 & +1 \end{bmatrix} \quad\quad\quad G_y = \begin{bmatrix} +1 & +2 & +1\\ 0 & 0 & 0\\ -1 & -2 & 1 \end{bmatrix} Gx=121000+1+2+1Gy=+101+202+101

二阶微分的边缘检测
  二阶微分公式用差分法,推理如下
∂ 2 f ∂ x 2 = 2 f ( x , y ) − f ( x − 1 , y ) − f ( x + 1 , y ) \frac{\partial^2 f}{\partial x^2}=2f(x,y)-f(x-1,y)-f(x+1, y) x22f=2f(x,y)f(x1,y)f(x+1,y)
∂ 2 f ∂ y 2 = 2 f ( x , y ) − f ( x , y − 1 ) − f ( x , y + 1 ) \frac{\partial^2 f}{\partial y^2}=2f(x,y)-f(x,y-1)-f(x, y+1) y22f=2f(x,y)f(x,y1)f(x,y+1)
▽ 2 f = 4 f ( x , y ) − [ f ( x − 1 , y ) + f ( x , y − 1 ) + f ( x , y + 1 ) + f ( x + 1 , y ) ] \triangledown^2f=4f(x,y)-[f(x-1,y)+f(x,y-1)+f(x,y+1)+f(x+1,y)] 2f=4f(x,y)[f(x1,y)+f(x,y1)+f(x,y+1)+f(x+1,y)]
符合二阶微分的算子是laplacian。

G x = [ 0 − 1 0 − 1 4 − 1 0 − 1 0 ] G y = [ − 1 − 1 − 1 − 1 8 − 1 − 1 − 1 − 1 ] G_x = \begin{bmatrix} 0 & -1 & 0\\ -1 & 4 & -1\\ 0 & -1 & 0 \end{bmatrix} \quad\quad\quad G_y = \begin{bmatrix} -1 & -1 & -1\\ -1 & 8 & -1\\ -1 & -1 & -1 \end{bmatrix} Gx=010141010Gy=111181111

二、Python robert锐化

import numpy as np
import matplotlib.pyplot as plt
def image_gray(image):gray = np.dot(image[:, :, ...], [0.299, 0.587, 0.114])#等同0.299 * image[:, :, 0] + 0.587 * image[:, :, 1] + 0.114 * image[:, :, 2]return gray.astype(np.uint8)def robert_sharpen(image, gx, gy):h, w = image.shapen, n = gx.shapefiltered_image = np.zeros((h, w))m = int(n / 2)for i in range(m, h - m):for j in range(m, w - m):   gx_value = np.sum(np.multiply(gx, image[i - m: i + m, j - m: j + m]))gy_value = np.sum(np.multiply(gy, image[i - m: i + m, j - m: j + m]))gxy_value = np.sqrt(gx_value ** 2 + gy_value ** 2)filtered_image[i, j] = gxy_valuereturn filtered_image.astype(np.uint8)img = plt.imread("lenna.png")
img = img * 255#图像是[0-1]--->[0-255],确认一下自己的图像是[0-1]还是[0-255]
img = img.astype(np.uint8)
gx = np.array([[1, 0],[0, -1]])
gy = np.array([[0, 1],[-1, 0]])
gray = image_gray(img)
robert_image = robert_sharpen(gray, gx, gy)
fig = plt.figure(figsize=(10, 6))
ax = plt.subplot(1, 2, 1)
ax.set_title("raw image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(gray, cmap="gray")
ax = plt.subplot(1, 2, 2)
ax.set_title("robert image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(robert_image, cmap="gray")

在这里插入图片描述

三、Python sobel锐化

import numpy as np
import matplotlib.pyplot as plt
def image_gray(image):gray = np.dot(image[:, :, ...], [0.299, 0.587, 0.114])#等同0.299 * image[:, :, 0] + 0.587 * image[:, :, 1] + 0.114 * image[:, :, 2]return gray.astype(np.uint8)def sobel_sharpen(image, gx, gy):h, w = image.shapen, n = gx.shapefiltered_image = np.zeros((h, w))m = int((n-1) / 2)for i in range(m, h - m):for j in range(m, w - m):   gx_value = np.sum(np.multiply(gx, image[i - m: i + m + 1, j - m: j + m + 1]))gy_value = np.sum(np.multiply(gy, image[i - m: i + m + 1, j - m: j + m + 1]))gxy_value = np.sqrt(gx_value ** 2 + gy_value ** 2)filtered_image[i, j] = gxy_valuereturn filtered_image.astype(np.uint8)img = plt.imread("lenna.png")
img = img * 255#图像是[0-1]--->[0-255],确认一下自己的图像是[0-1]还是[0-255]
img = img.astype(np.uint8)
gx = np.array([[-1, 0, 1],[-2, 0, 2],[-1, 0, 1]])
gy = np.array([[-1, -2, -1],[0, 0, 0],[1, 2, 1]])
gray = image_gray(img)
sobel_image = sobel_sharpen(gray, gx, gy)
fig = plt.figure(figsize=(10, 6))
ax = plt.subplot(1, 2, 1)
ax.set_title("raw image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(gray, cmap="gray")
ax = plt.subplot(1, 2, 2)
ax.set_title("sobel image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(sobel_image, cmap="gray")

在这里插入图片描述

四、Python laplacian锐化

import numpy as np
import matplotlib.pyplot as plt
def image_gray(image):gray = np.dot(image[:, :, ...], [0.299, 0.587, 0.114])#等同0.299 * image[:, :, 0] + 0.587 * image[:, :, 1] + 0.114 * image[:, :, 2]return gray.astype(np.uint8)def laplacian_sharpen(image, gx, gy):h, w = image.shapen, n = gx.shapefiltered_image = np.zeros((h, w))m = int((n-1) / 2)for i in range(m, h - m):for j in range(m, w - m):   gx_value = np.sum(np.multiply(gx, image[i - m: i + m + 1, j - m: j + m + 1]))gy_value = np.sum(np.multiply(gy, image[i - m: i + m + 1, j - m: j + m + 1]))gxy_value = np.sqrt(gx_value ** 2 + gy_value ** 2)filtered_image[i, j] = gxy_valuereturn filtered_image.astype(np.uint8)img = plt.imread("lenna.png")
img = img * 255#图像是[0-1]--->[0-255],确认一下自己的图像是[0-1]还是[0-255]
img = img.astype(np.uint8)
gx = np.array([[0, -1, 0],[-1, 4, -1],[0, -1, 0]])
gy = np.array([[-1, -1, -1],[-1, 8, -1],[-1, -1, -1]])
gray = image_gray(img)
sobel_image = sobel_sharpen(gray, gx, gy)
fig = plt.figure(figsize=(10, 6))
ax = plt.subplot(1, 2, 1)
ax.set_title("raw image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(gray, cmap="gray")
ax = plt.subplot(1, 2, 2)
ax.set_title("sobel image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(sobel_image, cmap="gray")

在这里插入图片描述

五、FPGA sobel锐化

//3*3图像
//P11   P12   P13
//P21   P22   P23
//P31   P32   P33//Gx算子
//-1     0     1
//-2     0     2
//-1     0     1
//Gx = -P11 + P13 - 2*P21 + 2*P23 - P31 + P33
//Gx = (P13 - P11) + 2*(P23 - P21) + (P33 - P31)//Gy算子
//1      2     1
//0      0     0
//-1     -2    -1
//Gy = P11 + 2*P12 + P13 - P31 - 2*P32 - P33
//Gy = (P11 - P31) + 2*(P12 - P32) + (P13 - P33)
module  ycbcr_sobel_sharpen
(input	wire			sys_clk		,	//系统时钟,频率为50MHZinput	wire			sys_rst_n	,	//系统复位,低电平有效input	wire			rgb_valid	,	//RGB565图像显示有效信号input	wire	[7:0]	y_data		,	//Y分量input	wire	[11:0]	pixel_x		,	//有效显示区域横坐标input	wire	[11:0]	pixel_y		,	//有效显示区域纵坐标output	reg		[15:0]	sobel_data		//Sobel算法处理后的图像数据
);reg				y_valid		;	//Y分量有效信号
//shift ram
wire	[7:0]	data_row1	;	//移位寄存器第一行数据
wire	[7:0]	data_row2	;	//移位寄存器第二行数据
wire	[7:0]	data_row3	;	//移位寄存器第三行数据
//3*3像素数据,左上角至右下角共9个数据
reg		[7:0]	p11			;	//3*3第1个像素数据
reg		[7:0]	p12			;	//3*3第2个像素数据
reg		[7:0]	p13			;	//3*3第3个像素数据
reg		[7:0]	p21			;	//3*3第4个像素数据
reg		[7:0]	p22			;	//3*3第5个像素数据
reg		[7:0]	p23			;	//3*3第6个像素数据
reg		[7:0]	p31			;	//3*3第7个像素数据
reg		[7:0]	p32			;	//3*3第8个像素数据
reg		[7:0]	p33			;	//3*3第9个像素数据
//Sobel算子
wire	[15:0]	Gx			;	//水平梯度值
wire	[15:0]	Gy			;	//数值梯度值
wire	[7:0]	Gxy			;	//总体梯度值assign  data_row3 = y_data  ;
assign  Gx = (p13 - p11) + 2*(p23 - p21) + (p33 - p31)  ;
assign  Gy = (p11 - p31) + 2*(p12 - p32) + (p13 - p33)  ;//设定第一行、第二行,第一列、第二列显示全白色
always@(*)if((pixel_y == 12'd0)||(pixel_y == 12'd1)||(pixel_x == 12'd2)||(pixel_x == 12'd3))sobel_data = 16'hffff  ;elsesobel_data = {Gxy[7:3],Gxy[7:2],Gxy[7:3]}  ;//锐化核心代码always@(posedge sys_clk or negedge sys_rst_n)if(sys_rst_n == 1'b0)y_valid  <=  1'b0  ;elsey_valid  <=  rgb_valid  ;always@(posedge sys_clk or negedge sys_rst_n)if(sys_rst_n == 1'b0)begin{p11,p12,p13}  <=  24'd0  ;{p21,p22,p23}  <=  24'd0  ;{p31,p32,p33}  <=  24'd0  ;endelse  if(y_valid == 1'b1)begin{p11,p12,p13}  <= {p12,p13,data_row1}  ;{p21,p22,p23}  <= {p22,p23,data_row2}  ;{p31,p32,p33}  <= {p32,p33,data_row3}  ;end	elsebegin{p11,p12,p13}  <=  24'd0  ;{p21,p22,p23}  <=  24'd0  ;{p31,p32,p33}  <=  24'd0  ;end		shift_ram_gen  shift_ram_gen_inst
(.clock 		(sys_clk	),.shiftin	(data_row3	),.shiftout 	(			),.taps0x 	(data_row2	),.taps1x 	(data_row1	)
);sqrt_gen  sqrt_gen_inst 
(.radical	(Gx*Gx + Gy*Gy),.q 			(Gxy	),.remainder 	()
);endmodule

在这里插入图片描述


总结

  图像锐化就到此结束,剩下的交给小伙伴自行实现。Python的prewitt实现;FPGA的robert、prewitt、laplacian算子实现,你都可以尝试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/729624.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

品牌要把控质量也要管控价格

在品牌发展的道路上&#xff0c;产品质量的把控非常重要&#xff0c;关系到品牌的竞争力&#xff0c;但品牌要长期发展&#xff0c;产品要获得市场足够份额&#xff0c;还需要有稳定的价格体系做支撑&#xff0c;这个价格不是仅凭品牌单方面的定价而定&#xff0c;而是整个渠道…

Oracle定时任务和存储过程

--1.声明定时任务 DECLAREjob NUMBER; BIGIN dbms_job.sumit(job, --任务ID,系统定义的test_prcedure(19)&#xff0c;--调用存储过程&#xff1f;to_date(20240305 02:00&#xff0c;yyyymmdd hh24:mi) --任务开始时间sysdate1/(24*60) --任务执行周期 [每分钟执行…

商业前端TS开发自动化工具

本期作者 一、背景 商业侧的业务比较复杂&#xff0c;B端项目中含有大量常量类的类型判断&#xff0c;且因历史原因&#xff0c;很多常量值前端无法直接知其含义&#xff0c;这既不利于新人的上手&#xff0c;也不利于项目的维护。 在开发协作上&#xff0c;前后端的API沟通&a…

什么是工业边缘网关?工业边缘网关有什么作用?

在数字化和智能化的浪潮下&#xff0c;工业领域正迎来前所未有的变革。其中&#xff0c;工业边缘网关作为这场变革中的重要角色&#xff0c;正逐渐受到人们的关注。那么&#xff0c;什么是工业边缘网关&#xff1f;它如何在工业数字化中发挥作用&#xff1f;今天&#xff0c;就…

Wireshark——获取捕获流量的前N个数据包

1、问题 使用Wireshark捕获了大量的消息&#xff0c;但是只想要前面一部分。 2、方法 使用Wireshark捕获了近18w条消息&#xff0c;但只需要前5w条。 选择文件&#xff0c;导出特定分组。 输入需要保存的消息范围。如&#xff1a;1-50000。 保存即可。

环链表寻找交点

目录 1.题目描述和出处 2.分析 3.代码 1.题目描述和出处 LCR 022. 环形链表 II - 力扣&#xff08;LeetCode&#xff09; 描述很简单&#xff0c;寻找交点&#xff0c;找到则返回交点&#xff0c;找不到返回空。 2.分析 如图&#xff1a;&#xff08;b表示环的长度&#…

springboot3.x集成nacos踩坑,并实现多环境配置

一、nacos安装部署 springboot3.x集成Nacos首先需要将Nacos从1.x升级到2.x&#xff0c;建议直接安装2.x版本&#xff0c;手动将1.x的配置信息迁移到2.x中&#xff0c;先并行一段时间&#xff0c;待全部迁移完成稳定运行之后再停掉1.x&#xff0c;升级和安装、操作请查看官方文…

DailyNotes个人笔记管理工具

DailyNotes 是记录笔记和跟踪任务的应用程序&#xff0c;使用markdown进行编辑 部署 下载镜像 docker pull m0ngr31/dailynotes创建目录并授权 mkdir -p /data/dailynotes/config_dir chmod -R 777 /data/dailynotes启动容器 docker run -d --restart always --name mynot…

Java中的数据压缩和存储技术:Zip、GZip与Brotli

第1章&#xff1a;引言 大家好&#xff0c;我是小黑&#xff0c;作为一名Java程序员&#xff0c;在业务开发中&#xff0c;常常面临着一个问题&#xff1a;如何高效地处理和传输这些庞大的数据呢&#xff1f;答案就在于数据压缩技术。数据压缩&#xff0c;简而言之&#xff0c…

SpringBoot+Ajax+redis实现隐藏重要接口地址

&#x1f3e1;浩泽学编程&#xff1a;个人主页 &#x1f525; 推荐专栏&#xff1a;《深入浅出SpringBoot》《java对AI的调用开发》 《RabbitMQ》《Spring》《SpringMVC》《项目实战》 &#x1f6f8;学无止境&#xff0c;不骄不躁&#xff0c;知行合一 文章目录 …

九型人格测试,8号领袖型人格的职业分析

8号人格&#xff0c;也叫领袖型人格&#xff0c;在九型人格中间&#xff0c;是一种天生领导的存在。他们生性开朗&#xff0c;能够和其他人建立良好的关系&#xff0c;为人不拘小节&#xff0c;遇强则强&#xff0c;坚守心中的理想和正义。不喜欢被人控制&#xff0c;喜欢自己当…

Java并发-并发模型

可以使用不同的并发模型来实现并发系统。一并发模型指定的系统协作线程如何完成他们给予的任务。不同的并发模型以不同的方式拆分任务&#xff0c;线程可以以不同的方式进行通信和协作。本并发模型教程将更深入地介绍撰写本文时&#xff08;2015年至2019年&#xff09;使用的最…

大模型时代,华为与中软国际携手“打通AI落地应用最后一公里”

文 | 智能相对论 作者 | 叶远风 大模型驱动千行百业智能化变革已经成为广泛共识&#xff0c;下一步的问题是&#xff0c;企业要如何更好地推进&#xff1f; 近日&#xff0c;“2024中关村论坛系列活动——第二届北京人工智能产业创新发展大会”在北京国家会议中心成功举办&a…

yudao-cloud 学习笔记

前端代码 浏览器打开 https://cloud.iocoder.cn/intro/ F12 执行代码 var aaa $(".sidebar-group-items").find("a"); var ll[]; var tt[]; for(var i0;i<aaa.length;i ){ ll.push("https://doc.iocoder.cn" $(aaa[i]).attr("href&quo…

Hi3516DV500+SC2210 AIISP 黑光相机

1. Hi3516DV500 Hi3516DV500是一颗面向行业市场推出的高清智能网络摄像头SoC。该芯片最高支持2路sensor输入&#xff0c;支持最高5M30fps的ISP图像处理能力&#xff0c;支持2F WDR、多级降噪、六轴防抖、多光谱融合等多种传统图像增强和处理算法&#xff0c;支持通过AI算法对输…

第11周,第三期技术动态

大家好&#xff0c;才是真的好。 真没想到&#xff0c;本周是今年第十一周&#xff0c;2024年还有不到三百天就结束了。 今天周五&#xff0c;我们继续介绍与Domino相关产品新闻&#xff0c;以及互联网或其他IT行业动态等。 一、在Windows 10和Windows 11上运行Domino和Trav…

案例研究|辛格林电梯借助DataEase实现数据整合与智能展示

辛格林电梯&#xff08;SIGLEN&#xff09;于2012年创立&#xff0c;是电梯领域的领军品牌之一。该公司总部位于广东佛山&#xff0c;是全国首批获得A1级电梯制造资质的企业&#xff0c;拥有省级工程技术研究中心。辛格林电梯专注于研发和生产高品质电梯产品&#xff0c;涵盖别…

一个用libcurl多线程下载断言错误问题的排查

某数据下载程序&#xff0c;相同版本的代码&#xff0c;在64位系统中运行正常&#xff0c;但在32位系统中概率性出现断言错误。一旦出现&#xff0c;程序无法正常继续&#xff0c;即使重启亦不行。从年前会上领导提出要追到根&#xff0c;跟到底&#xff0c;到年后的今天&#…

通过统一规划和团队整合,提升企业财务洞察

在当今快节奏的商业环境中&#xff0c;企业财务职能部门更应该采取更迅速的行动来适应这个社会。大部分企业期待更高效的战略决策&#xff0c;尤其是面临海量数据信息的堆叠。但是企业领导者应该知道&#xff0c;速度本身并不是最终目标&#xff0c;财务团队必须更快地完成工作…

基于springboot的大学生智能消费记账系统的设计与实现(程序+数据库+文档)

** &#x1f345;点赞收藏关注 → 私信领取本源代码、数据库&#x1f345; 本人在Java毕业设计领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目&#xff0c;希望你能有所收获&#xff0c;少走一些弯路。&#x1f345;关注我不迷路&#x1f345;** 一、研究背景…