AI 应用之路:质疑汤姆猫,成为汤姆猫,超越汤姆猫

过去一年,我对 AI 应用的看法经历了这样一个过程:质疑汤姆猫,理解汤姆猫,成为汤姆猫,超越汤姆猫。

什么是汤姆猫?汤姆猫是 2010 年移动互联网早期的一款应用,迅速走红,又淡出视野。这是一个比喻,指代那些很好玩,一度成为现象级,但没有长期留存的产品。拍出海马体的妙鸭相机,让郭德纲说英文相声的 Heygen,都有点 AI 时代汤姆猫的意思。

坦率讲,最开始我是质疑汤姆猫的,这类产品一度热闹,但玩法单一,没有长期留存率,很难持续。在写的《今天的AI创业,与移动互联网时代的区别在哪里?》中,有一段对汤姆猫的讨论:

一个平台从 1 岁走到黄金年龄,会经历很多真伪机会。回头看移动互联网的早期,有四类机会都曾霸榜。

……

第二类机会叫「汤姆猫」,是小机会。汤姆猫很巧妙的用到了手机的麦克风,你说什么话,它就会用猫的语气来复述。当时日下载量到了百万级别,但没有长期留存率,因为玩法单一,和猫对话几天后就没有新鲜感了。后来汤姆猫被中国的一家上市公司收购了,作价 70 亿人民币。

今天在 AI 的早期阶段,摆在我们眼前的依然是这四类机会,我们需要想清楚,谁是 AI 时代的手电筒,谁是 AI 时代的抖音快手。基于大模型的套壳应用是新时代的手电筒,很短的时间就会被大模型的能力击穿;基于 AI 做出的一些原生小爆款应用,如果玩法过于单一,无法形成自己的资产,很可能成为新时代的汤姆猫;

后来为什么理解汤姆猫了?因为更理解大模型的能力边界,和当下所处的阶段了。

01

理解汤姆猫,

是因为理解了当下大模型的能力边界

图片

大模型的发展规律和互联网有很大差异,更应该参照芯片行业的发展规律。

50 年代,仙童发明了半导体后,随着芯片能力的提升,先后出现了计算器、PC、游戏机、移动手机、MP3、智能手机这些国民级的电子产品,这背后是摩尔定律的推动,「处理器的性能每两年翻一倍,价格下降为之前的一半」。

这些电子产品横跨几十年,依次解锁,半导体刚出来的时候,它的能力只能用来做计算器,随着计算能力的提升,才能造出 PC。

OpenAI 推出 ChatGPT 只有一年多时间,基于大模型的应用的出现也是有先后顺序的,在要出计算器、随身听的时候,不要硬造 PC;在要出汤姆猫的时候,不要硬造抖音,造不出来。历史无法跳跃,只能经历。

Scaling Law 会成为 AI 时代的摩尔定律,堆算力,堆参数。随着模型能力的提升,基于大模型不是造应用,而是造虚拟人,起初是本科生,之后是白领,之后是某些领域的专家比如医生、律师,后面会造出科学家,最终极的形态是 AGI,随着模型智能程度的提升,这些虚拟人会依次解锁。

以造人的标准来看待当下大模型的能力,就知道需要多少智能,和中间的差距了。

而现在我们常说的「AIGC 应用」,可能只是 AI 发展史上的过渡阶段,是因为当下的模型还造不出虚拟人,所以先造辅助软件。

02

成为前千分之一的汤姆猫,

完成能力蜕变

理解汤姆猫后,我认为应该尽快「成为汤姆猫」,且做前千分之一的汤姆猫。

这缘于我的一个观察。

和很多投过的早期项目相处后,我发现创始人的能力不是线性增长,而是跳变的,忽然之间上了很大一个台阶,可能就一个月时间,隔壁老王已经不是我认识的老王,我得管他叫王哥了。

发生跳变的时间点往往和 PMF 跑通有关系,跑通后,整个人的思考水平、决策的犀利程度、心态的平稳度都有一个质变,再之后,就和业务量爬到几层楼相关了,月收入 1000 万、月收入 1 亿、月收入 10 亿是完全不同的思考水平,爬楼的中间,会有很多正负反馈,往往深刻又惨痛,反馈越大,能力跳变越明显。这才有了士别三日当刮目相看的感觉。

这让我明白了一个朴素的道理,产品是创始人的实验室,首先要跑通 PMF,让自己有个实验室,哪怕这个实验室小了点

然后要寻找更大的实验室,基于 10 万日活和 1 亿日活能做的实验是不一样的,一个人天天基于几亿日活做商业实验,他的水平能不高吗?为什么一些平台级产品的大佬思考水平极高,像开了天眼一样,因为他有几个亿的用户啊。

人人都想做有终局的产品,做下一个微信和抖音,但别忘了,张小龙是做 Foxmail 被腾讯收购的,Foxmail 是个邮件客户端,是那个年代最知名的套壳应用了。

基于这一观察,和 AI 现在所处的极早期阶段,在寻找 PMF 的时候,先不要嫌弃它是汤姆猫,找个具体且收敛的切入点,跑通它,让自己有个实验室,先完成能力跳变。

AI 和移动互联网的差异,远大于移动互联网和互联网的差异,先跳下来,刷一遍自己的 ROM 很重要。在 AI 这个全新的世界中,大多数人是从头学,今年完成能力跳变,还是明年完成能力跳变,会遇到截然不同的机遇。

但即便以汤姆猫的标准看 AI 应用,只求爆款,不苛求留存率,也只有前千分之一的产品能成汤姆猫。

03

超越汤姆猫,

才有机会成为 Super App

前千分之一的选手成为汤姆猫后,会面临两个选择:

一是基于汤姆猫继续绣花,迭代产品,希望做出长期留存,这很难,因为这个产品的地基很薄,就是绣花绣上天,也是个绣花版汤姆猫,基于汤姆猫建成一个迪斯尼娱乐王国是不现实的

二是通过做汤姆猫实现了团队能力升级,走出汤姆猫,去做新的事情。人站在一层楼和一百层楼看到的机会是不一样的,做过十亿的业务,自然会发现百亿业务的机会,这或许会找到更厚的地基,做出 super App。这是所谓的「超越汤姆猫」。

选一还是选二,是一道分水岭。很多耳熟能详的平台级产品,初创时都有过类似汤姆猫的阶段,又推出新产品超越了汤姆猫

2012 年 3 月,字节跳动成立,先推出的是内涵段子,同年 8 月推出了今日头条,2016 年 9 月,抖音上线。

2015 年 4 月,拼好货上线,做的是拼团买水果,同年 9 月,拼多多上线,切到了电商的主战场,2022 年 9 月,Temu 上线,开始海外的征程。

2010 年 3 月,美团团购上线,2013 年 11 月,美团外卖上线,2015 年 10 月,美团合并大众点评,从交易平台延伸到了信息平台。

好了,即便我们懂了「超越汤姆猫」这个道理,依然难过好这一生。

绝大多数情况下,人们很难大大方方承认自己是个汤姆猫,面对低留存率、低商业价值的时候,会做很多设想,是不是自己功能不够完善?是不是用户数量不够多?是不是应该把汤姆猫升级成社交产品,就有网络效应了?这种事情在移动互联网发生过很多了,做日历的、做滤镜的、做小游戏的,都有过平台梦。

「成为汤姆猫」是块石头,用好了可以踩着石头过河,实现「超越汤姆猫」;用不好是阻拦前行的巨石,做一辈子的汤姆猫。

04

Scaling Law 会成为 AI 时代的摩尔定律

上面是从质疑到成为的心路历程,也是感受当下,认清当下,抓住当下的过程。

那么更具体的聊聊当下,现在处于什么 timing,会推演出哪些信号?

最关键的信号,Scaling Law 会成为AI时代的摩尔定律,模型的智能程度每年增长百分之 X,价格降为之前的 1/N,现在还只有一个定性的描述,当 X 和 N 都成为一个定量数字的时候,这个规律就开始正式运转了。

Scaling Law 会把模型送上一个个新高度,从而会依次解锁上层应用,也就是造人。这些虚拟人需要替代真人,端到端的完成任务,做到「L4 级别」。在真实工作环境中,我们 90% 的时间是在解决那 10% 的难题,大模型能否解决好那 10% 的难题是一道及格线,过不了这个及格线,大模型只能做副驾 copilot,充其量是一个好用的软件;过了这个及格线,大模型就是主驾,我们开始为主驾付工资。

基于造人的标准,需要有一套图灵测试 2.0。在 ChatGPT 出来后,模型已经通过图灵测试 1.0,接近人的回答水平,以假乱真了。图灵测试 2.0 是一套基于工种的测试,比如文案策划、剧本杀小姐姐、程序员、医生,如果这个虚拟程序员能听懂你的需求、写出完整代码、修正 bug,那他就通过程序员图灵测试了。当下的大模型基本通过剧本杀小姐姐的图灵测试了,大家在 Character.ai、星野这些应用上和 AI 聊的很欢。

如果以图灵测试 2.0 来衡量当下的 AI Agent,真正的 Agent 尚未出现,真正意义上的 Agent 是可以自己规划任务,端到端的完成任务的。

如果第一个 Agent 出现,大概率是出在 OpenAI,因为他有最领先的模型,Agent 的出现主要和模型的智能程度相关,OpenAI 什么时候出 Agent 的 demo 产品,会是应用层百花齐放的关键信号

基于上面的这些推演,AI 还在很早期的阶段,如果硬要类比互联网的话,此时此刻对应 Yahoo 出现的门户时代。

做 AI 应用的创业者经常半夜问自己,我这应用有网络效应吗?放心,没有。

即便是 ChatGPT 也没有网络效应,只有品牌效应。互联网早期,门户网站也没有网络效应,只有品牌效应,Google 出来后才有了规模效应,Facebook 出来后才有了网络效应。

AI 行业什么时候会有网络效应这种城河?可能是 AI Agent 横行天下的时候,比如我们有个秘书 Agent,帮我们和生意上的伙伴约时间排会,双方的 Agent 一通交流,一握手,约好了!对方的 Agent 也必须是同一厂牌的 Agent,才能最大限度的交流,这就是 AI 时代的网络效应。

多久会发展到这个阶段?很难量化,但不要小看 AI 的进化速度。Sora 出来后,带给我最大的触动是,他比想象中来的快,行业里的人认为 2024 年年底或 2025 年才会出高质量的视频模型,OpenAI 直接在今年 2 月就拿出来了。

对 Sora 的热议,又一次体现了我们总是「高估当下,低估未来」,Sora 还没有公测,大家看到的是精选出来的 demo,在公测后,我估计大概率达不到大家的预期,这时又会出现「不过尔尔」的声音。又过一段时间,Sora 又进化的让人惊讶。

这种冷热交替,去年年初的时候已经在 ChatGPT 上上演过了,先是热议,认为要革命了,然后大家用了一段时间后,觉得还是有局限性,智慧程度不够,上层的杀手级应用也没出现,热议之后是冷静。然后 Sora 横空出世,又带来一波热议,如此往复。

别忘了,不管冷热,Scaling Law 永远在那里,在推动着模型成长。

万物自有其规律,没人能越过 1 到 17 岁,一步到位长到 18 岁。我们都知道 AI 带来的机会大,这是共识了。对当下 timing 的研判、对模型能力边界的理解,还处于非共识,这是真正考验创业者的地方

人人都想做有终局的产品,望着终局,恨不能省略中间的过程,跳跃中间的历史,直接做最有价值的事情,这是一种我执,忽略了真实世界运转的规律。

而理解汤姆猫、成为汤姆猫、超越汤姆猫,才是真实世界运转的规律,这是一种去执。

去执后,更容易看清当下,抓住当下。浪潮来的时候,关键是要站在海里,且早早学会游泳,早早习惯海水的味道。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/728230.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华清远见作业第四十四天——FreeRTOS(第二天)

总结DMA空闲中断接收数据的使用方法 开启DMA接收 在主函数中以DMA空闲中断的方式接收数据的函数:HAL_UARTEx_ReceiveToIdle_DMA 然后调用空闲中断回调函数 切记/每次接收到数据都需要重新开启接收数据的函数。 DMA的作用 DMA是直接内存访问,使用DMA可…

JS使用方式

JS是解释性语言,所以不需要搭建类似C#/Java之类的开发运行环境,因为他们是编译型语言。JS一般运行在浏览器中或者node环境中,这里都是JS引擎的功劳。 node环境使用 推荐使用nvm管理node版本,nrm管理代理地址。 安装node&#xf…

如何确保OKR与公司的整体战略保持一致?

深入理解公司战略 首先,团队或个人需要全面、深入地理解公司的整体战略和目标。这包括了解公司的长期规划、市场定位、竞争优势以及核心竞争力等方面。只有对公司的战略有清晰的认识,才能确保OKR与之保持一致。 如何确保OKR与公司的整体战略保持一致&a…

Navicat安装破解教程

蓝奏云下载地址https://wws.lanzoux.com/b01tqirzc或者链接https://pan.baidu.com/s/15cfQAFdQsn8xSg_2LiQZHg 提取码:q3rd链接:https://pan.baidu.com/s/1WwyCC03qcnqnWKGo-m6ZjA 提取码:pg9uNavicat16目前没有破解方法,15可以&a…

市场复盘总结 20240307

仅用于记录当天的市场情况,用于统计交易策略的适用情况,以便程序回测 短线核心:不参与任何级别的调整,采用龙空龙模式 一支股票 10%的时候可以操作, 90%的时间适合空仓等待 二进三: 进级率中 89% 最常用的…

leetcode:88. 合并两个有序数组

原题地址:https://leetcode.cn/problems/merge-sorted-array/description/ 题目描述 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。 请你 合并 nums2 到 nums1 中&a…

CVE-2024-25600 WordPress Bricks Builder RCE-漏洞分析研究

本次代码审计项目为PHP语言,我将继续以漏洞挖掘者的视角来分析漏洞的产生,调用与利用..... 前方高能,小伙伴们要真正仔细看咯..... 漏洞简介 CVE-2024-25600 是一个严重的(CVSS 评分 9.8)远程代码执行 (RCE) 漏洞&am…

Java 8 Supplier函数式接口介绍及代码样例

介绍 供应商接口(Supplier Interface)是 Java 8 引入的 java.util.function 包的一部分,用于在 Java 中实现函数式编程。它表示一个函数,该函数不接收任何参数,但会产生一个类型为 T 的值。 T:表示结果的类…

Vue3+ts(day01:Vue3简介、初始化Vue3工程)

学习源码可以看我的个人前端学习笔记 (github.com):qdxzw/frontlearningNotes 觉得有帮助的同学,可以点心心支持一下哈(笔记是根据b站上学习的尚硅谷的前端视频【张天禹老师】,记录一下学习笔记,用于自己复盘,有需要学…

基于arduino板的写字机设计

目 录 摘 要 Abstract 引 言 1 总体方案设计 1.1 系统方案设计 1.2 系统工作原理 2 硬件电路的设计 2.1 主控模块设计 2.2 驱动模块设计 2.3 时钟模块设计 2.4 总电路设计 3 软件设计 3.1 Arduino开发环境 3.2 主程序设计 3.3 抬笔落笔的子程序设计 3.4 摆臂子…

Seata 2.x 系列【2】数据库事务

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 3.1.0 本系列Seata 版本 2.0.0 源码地址:https://gitee.com/pearl-organization/study-seata-demo 文章目录 1. 概述2. ACID 模型2.1 原子性2.2 一致性2.3 隔离性2…

Postman报错提示 Could not get any response怎么解决

在通过postman请求做接口测试的过程中,有时候会遇到一些报错,当遇到这些报错我们不要着急,看着具体哪里报错,然后进行解决 postman报错 经常使用postman的小伙伴们都应该遇到过一些报错,遇到报错的时候我们不要着急&…

这可是全网网工华为认证学习笔记最完整,最详细的版本,没有之一

文章篇幅较长,耐心看完你一定有所收获。 华为认证是什么? 其实就是由华为公司所提出的评价网络工程师专业能力的一个认证,它分为三个级别,分别是这个华为认证的工程师(HCIA),华为认证的高级工程…

CTP-API开发系列之三:柜台系统简介

CTP-API开发系列之三:柜台系统简介 CTP-API开发系列之三:柜台系统简介中国金融市场结构---交易所柜台系统通用柜台系统极速柜台系统主席与次席 CTP柜台系统CTP组件名称对照表CTP柜台系统程序包CTP柜台系统架构图 CTP-API开发系列之三:柜台系统…

重新排序。

问题描述 给定一个数组A和一些查询 L,R求数组中第L至第 R个元素之和。 小蓝觉得这个问题很无聊,于是他想重新排列一下数组使得最终每个查 询结果的和尽可能地大。小蓝想知道相比原数组,所有查询结果的总和最多可 以增加多少? 输入格式 输入第一行包含一个整数n。 第二行包含n个…

钉钉群内自定义机器人发送消息功能实现

文章目录 钉钉群内自定义机器人发送消息功能实现1、设置webhook自定义机器人2、查看官方文档,使用open api3、编写业务代码4、发送成功结果如下 钉钉群内自定义机器人发送消息功能实现 1、设置webhook自定义机器人 设置关键词 添加完成后,获得改机器人的…

直流电磁铁计算公式

直流电磁铁计算公式 1. 磁势2. 磁场强度3. 磁感应强度4. 电磁吸力5. 线圈发热 1. 磁势 产生磁场的磁势计算公式: F N ⋅ I FN \cdot I FN⋅I N:是线圈匝数,I:是线圈中的电流注:线圈过热,可以减小电流&am…

力扣--从前序与中序遍历序列构造二叉树

题目: 思想: 首先先序遍历能确定根节点的值,此时查看该值在中序遍历中的位置(如果索引为i),那么i左侧为左子树,i 右侧为右子树。从中序数组中即可看出左子树结点个数为 i,右子树节点…

浅析扩散模型与图像生成【应用篇】(八)——BBDM

8. BBDM: Image-to-Image Translation with Brownian Bridge Diffusion Models 本文提出一种基于布朗桥(Brownian Bridge)的扩散模型用于图像到图像的转换。图像到图像转换的目标是将源域 A A A中的图像 I A I_A IA​,映射到目标域 B B B中得…

详解事件循环机制

浏览器最主要的进程 : 渲染主线程 如何理解JS的异步 任务没有优先级,但消息队列有优先级 阐述一下JS的事件循环