ViT简介
Vision Transformer。transformer于2017年的Attention is all your need提出,该模型最大的创新点就是将transformer应用于cv任务。
论文题目:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
论文链接:https://arxiv.org/pdf/2010.11929.pdf
代码地址:https://github.com/google-research/vision_transformer
ViT三大模块
ViT主要包含三大模块:PatchEmbed、多层Transformer Encoder、MLP(FFN),下面用结构图和代码解析这第三大模块。
ViT图像预处理模块——PatchEmbed
class PatchEmbed(nn.Module):"""2D Image to Patch Embedding,二维图像patch Embedding"""def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):super().__init__()img_size = (img_size, img_size) # 图片尺寸224*224patch_size = (patch_size, patch_size) #下采样倍数,一个grid cell包含了16*16的图片信息self.img_size = img_sizeself.patch_size = patch_size# grid_size是经过patchembed后的特征层的尺寸self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])self.num_patches = self.grid_size[0] * self.grid_size[1] #path个数 14*14=196# 通过一个卷积,完成patchEmbedself.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)# 如果使用了norm层,如BatchNorm2d,将通道数传入,以进行归一化,否则进行恒等映射self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()def forward(self, x):B, C, H, W = x.shape #batch,channels,heigth,weigth# 输入图片的尺寸要满足既定的尺寸assert H == self.img_size[0] and W == self.img_size[1], \f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."# proj: [B, C, H, W] -> [B, C, H,W] , [B,3,224,224]-> [B,768,14,14]# flatten: [B, C, H, W] -> [B, C, HW] , [B,768,14,14]-> [B,768,196]# transpose: [B, C, HW] -> [B, HW, C] , [B,768,196]-> [B,196,768]x = self.proj(x).flatten(2).transpose(1, 2)x = self.norm(x)return x
多层Transformer Encoder模块
该模块的主要结构是Muti-head Attention,也就是self-attention,它能够使得网络看到全局的信息,而不是CNN的局部感受野。
class Attention(nn.Module):"""muti-head attention模块,也是transformer最主要的操作"""def __init__(self,dim, # 输入token的dim,768num_heads=8, #muti-head的head个数,实例化时base尺寸的vit默认为12qkv_bias=False,qk_scale=None,attn_drop_ratio=0.,proj_drop_ratio=0.):super(Attention, self).__init__()self.num_heads = num_headshead_dim = dim // num_heads #平均每个head的维度self.scale = qk_scale or head_dim ** -0.5 #进行query操作时,缩放因子# qkv矩阵相乘操作,dim * 3使得一次性进行qkv操作self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop_ratio)self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop_ratio)def forward(self, x):# [batch_size, num_patches + 1, total_embed_dim] 如 [bactn,197,768]B, N, C = x.shape # N:197 , C:768# qkv进行注意力操作,reshape进行muti-head的维度分配,permute维度调换以便后续操作# qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim] 如 [b,197,2304]# reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head] 如 [b,197,3,12,64]# permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)# qkv的维度相同,[batch_size, num_heads, num_patches + 1, embed_dim_per_head]q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)# transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]# @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]attn = (q @ k.transpose(-2, -1)) * self.scale #矩阵相乘操作attn = attn.softmax(dim=-1) #每一path进行softmax操作attn = self.attn_drop(attn)# [b,12,197,197]@[b,12,197,64] -> [b,12,197,64]# @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]# 维度交换 transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]# reshape: -> [batch_size, num_patches + 1, total_embed_dim]x = (attn @ v).transpose(1, 2).reshape(B, N, C)x = self.proj(x) #经过一层卷积x = self.proj_drop(x) #Dropoutreturn x
MLP(FFN)模块:
class Mlp(nn.Module):"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""def __init__(self, in_features, hidden_features=None, out_features=None,act_layer=nn.GELU, # GELU是更加平滑的reludrop=0.):super().__init__()out_features = out_features or in_features #如果out_features不存在,则为in_featureshidden_features = hidden_features or in_features #如果hidden_features不存在,则为in_featuresself.fc1 = nn.Linear(in_features, hidden_features) # fc层1self.act = act_layer() #激活self.fc2 = nn.Linear(hidden_features, out_features) # fc层2self.drop = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return x
基本的Transformer模块
由Self-attention和MLP可以组合成Transformer的基本模块。Transformer的基本模块还使用了残差连接结构。
class Block(nn.Module):"""基本的Transformer模块"""def __init__(self,dim,num_heads,mlp_ratio=4.,qkv_bias=False,qk_scale=None,drop_ratio=0.,attn_drop_ratio=0.,drop_path_ratio=0.,act_layer=nn.GELU,norm_layer=nn.LayerNorm):super(Block, self).__init__()self.norm1 = norm_layer(dim) #norm层self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here# 代码使用了DropPath,而不是原版的dropoutself.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()self.norm2 = norm_layer(dim) #norm层mlp_hidden_dim = int(dim * mlp_ratio) #隐藏层维度扩张后的通道数# 多层感知机self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)def forward(self, x):x = x + self.drop_path(self.attn(self.norm1(x))) # attention后残差连接x = x + self.drop_path(self.mlp(self.norm2(x))) # mlp后残差连接return x
Vision Transformer类的实现
class VisionTransformer(nn.Module):def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,act_layer=None):"""Args:img_size (int, tuple): input image sizepatch_size (int, tuple): patch sizein_c (int): number of input channelsnum_classes (int): number of classes for classification headembed_dim (int): embedding dimensiondepth (int): depth of transformernum_heads (int): number of attention headsmlp_ratio (int): ratio of mlp hidden dim to embedding dimqkv_bias (bool): enable bias for qkv if Trueqk_scale (float): override default qk scale of head_dim ** -0.5 if setrepresentation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if setdistilled (bool): model includes a distillation token and head as in DeiT modelsdrop_ratio (float): dropout rateattn_drop_ratio (float): attention dropout ratedrop_path_ratio (float): stochastic depth rateembed_layer (nn.Module): patch embedding layernorm_layer: (nn.Module): normalization layer"""super(VisionTransformer, self).__init__()self.num_classes = num_classes #分类类别数量self.num_features = self.embed_dim = embed_dim # num_features for consistency with other modelsself.num_tokens = 2 if distilled else 1 #distilled在vit中没有使用到norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) #层归一化act_layer = act_layer or nn.GELU #激活函数self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)num_patches = self.patch_embed.num_patchesself.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) #[1,1,768],以0填充self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else Noneself.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))self.pos_drop = nn.Dropout(p=drop_ratio)# 按照block数量等间距设置drop率dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)] # stochastic depth decay ruleself.blocks = nn.Sequential(*[Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],norm_layer=norm_layer, act_layer=act_layer)for i in range(depth)])self.norm = norm_layer(embed_dim) # layer_norm# Representation layerif representation_size and not distilled:self.has_logits = Trueself.num_features = representation_sizeself.pre_logits = nn.Sequential(OrderedDict([("fc", nn.Linear(embed_dim, representation_size)),("act", nn.Tanh())]))else:self.has_logits = Falseself.pre_logits = nn.Identity()# Classifier head(s),分类头,self.num_features=768self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()self.head_dist = Noneif distilled:self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()# Weight init,权重初始化nn.init.trunc_normal_(self.pos_embed, std=0.02)if self.dist_token is not None:nn.init.trunc_normal_(self.dist_token, std=0.02)nn.init.trunc_normal_(self.cls_token, std=0.02)self.apply(_init_vit_weights)def forward_features(self, x):# [B, C, H, W] -> [B, num_patches, embed_dim]x = self.patch_embed(x) # [B, 196, 768]# cls_token类别token [1, 1, 768] -> [B, 1, 768],扩张为batch个cls_tokencls_token = self.cls_token.expand(x.shape[0], -1, -1)if self.dist_token is None:x = torch.cat((cls_token, x), dim=1) # [B, 196, 768]-> [B, 197, 768],维度1上的catelse:x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)x = self.pos_drop(x + self.pos_embed) #添加位置嵌入信息x = self.blocks(x) #通过attention堆叠模块(12个)x = self.norm(x) #layer_normif self.dist_token is None:return self.pre_logits(x[:, 0]) #返回第一层特征,即为分类值else:return x[:, 0], x[:, 1]def forward(self, x):# 分类头x = self.forward_features(x) # 经过att操作,但是没有进行分类头的前传if self.head_dist is not None:x, x_dist = self.head(x[0]), self.head_dist(x[1])if self.training and not torch.jit.is_scripting():# during inference, return the average of both classifier predictionsreturn x, x_distelse:return (x + x_dist) / 2else:x = self.head(x)return x
Transformer知识点
论文:Attention Is All You Need
论文地址:https://arxiv.org/pdf/1706.03762.pdf
Transformer由Attention和Feed Forward Neural Network(也称FFN)组成,其中Attention包含self Attention与Mutil-Head Attention。