【数据结构】树的基础入门

文章目录

  • 什么是树
  • 树的常见术语
  • 树的表示
  • 树的应用

什么是树

相信大家刚学数据结构的时候最先接触的就是顺序表,栈,队列等线性结构.
而树则是一种非线性存储结构,存储的是具有“一对多”关系的数据元素的集合

非线性 体现在它是由n个有限结点(可以是零个结点)组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的
一对多 体现在比如对图中A来说,A对于和B,C都存在联系,同理B,C与其他的也均存在关系

在这里插入图片描述

树的常见术语

节点的度:一个节点含有的子树的个数称为该节点的度(上图A的为2)
叶节点/终端节点:度为0的节点称为叶节点(上图DEFGH节点为叶节点)
非终端节点/分支节点:度不为0的节点,(上图A,B,C)
双亲节点/父节点:若一节点含有子节点,此节点称为其子节点的父节点(上图A是B的父节点)
孩子节点或子节点:一节点含有的子树的根节点称为该节点的子节点(上图B是A的孩子节点)
兄弟节点:具有相同父节点的节点互称为兄弟节点(B、C是兄弟节点)
树的度:一棵树中,最大的节点的度称为树的度(上图B的度最大,故树的度为3)
堂兄弟节点:双亲在同一层的节点互为堂兄弟(如上图D,E互为兄弟节点)
节点的祖先:从根到该节点所经分支上的所有节点(上图A是所有节点的祖先)
子孙:以某节点为根的子树中任一节点都称为该节点的子孙(上图所有节点都是A的子孙)
森林:由n(n>0)棵互不相交的树的集合称为森林

此外,另有两个术语需要单独讨论一下,即

节点的层次:从根开始定义起,有两种说法
①根为第1层,根的子节点为第2层…
②根为第0层,根的子节点为第1层…
树的高度或深度:树中结点的最大层次



比如,只有一个节点,A是第0层,也可以说是第1层,两者都是正确的
但是我更推荐说A是第1层,因为如果A是第0层,高度或深度就为0,
那么对于空树来说,它就只能是-1层,显然不合理
那么如果A是第1层,高度或深度就为1;而空树的高度或深度就为0了,个人认为这种安排更加合理



在这里插入图片描述

树的表示

树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等.

首先我们来看一种比较差的表示

struct TreeNode
{int val;struct  TreeNode* child1;struct  TreeNode* child2;struct  TreeNode* child3;//...
};    //缺点很明显,浪费空间,对于度只有1或0的节点就会浪费结构体内的空间//或者稍微改进一下
struct TreeNode
{int val;struct  TreeNode* childArray[5];
};  //同理,如果没有5个孩子的节点也会浪费空间

现在介绍一种非常常用且厉害的方法: 孩子兄弟表示法

struct TreeNode
{int val;struct  TreeNode* firstChild;struct  TreeNode* brother;
};    

此方法的思路流程如下:(链表)
在这里插入图片描述

再比如 双亲表示法:只存在父亲节点的指针或者下标

#define size 100//树中结点的最大数量
#define dataType int//树结构中数据类型
//节点
typedef struct TreeNode{dataType data;//树中结点的数据类型int parent;//它的父结点在数组中的位置下标
}TreeNode;
//树结构:  (上面的方法没有写这个树结构是因为上面是本质是链表,而这里是数组)
typedef struct {PTNode nodes[size];//存放树中所有结点int r,nums;//根的位置下标和结点数
}Tree;

逻辑思路如下(数组)
在这里插入图片描述

树的应用

1.文件系统:计算机的文件系统通常采用树形结构来组织文件和目录。根节点是文件系统的根目录,每个目录可以包含子目录和文件,这种结构可以方便地组织和访问文件。
2.数据库索引:数据库中的索引通常使用B树或B+树这样的树形结构来实现。树的节点包含关键字和指向其他节点的指针,可以快速地搜索和访问数据库中的数据。
3.解析树:编译器常使用树形结构来表示程序的语法结构。每个节点代表一个语法规则或语句,子节点表示该语句的组成部分,这种结构可以方便地进行语法分析和代码生成。

:这只是树形结构在实际中的一部分应用,它的灵活性和易于理解性使其成为许多领域中常用的数据结构。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/72582.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS/OpenHarmony(Stage模型)应用开发组合手势(二)并行识别

并行识别组合手势对应的GestureMode为Parallel。并行识别组合手势中注册的手势将同时进行识别,直到所有手势识别结束。并行识别手势组合中的手势进行识别时互不影响。 以在一个Column组件上绑定点击手势和双击手势组成的并行识别手势为例,由于单击手势和…

Apinto 网关 V0.14 版本发布,6 大插件更新!

大家好! 距离上次更新已经过去一段时间了,这段日子里我们一直在酝酿新的功能,本次的迭代将给大家带来 6 大插件的更新~一起来看看有哪些变化吧! 新特性 1. 新增 额外参数v2 插件,支持对转发参数进行加密、拼接等操作…

【软件测试】单元测试、集成测试、系统测试有什么区别?

单元测试、集成测试、系统测试有什么区别 1、粒度不同 集成测试bai粒度居中,单元测试粒度最小,系统du测试粒度最大。 2、测试方式不同 集成测试一般由开发zhi小组采用白盒加黑盒的方式来测试,单元测试一般由开发小组采用白盒方式来测试&a…

基于Python开发的玛丽大冒险小游戏(源码+可执行程序exe文件+程序配置说明书+程序使用说明书)

一、项目简介 本项目是一套基于Python开发的玛丽冒险小游戏程序,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Python学习者。 包含:项目源码、项目文档等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xf…

关于ChatGPT的个人的一些观点

问题 1 Q: 你认为ChatGPT是一款非常有用的工具吗? A: 我认为ChatGPT是一款非常有用的工具。它可以帮助人们解决各种问题,包括技术问题、心理问题、生活问题等等。同时,ChatGPT也可以成为人们分享想法和交流的平台,增强人与人之间…

chrome_elf.dll丢失怎么办?修复chrome_elf.dll文件的方法

Chrome是目前最受欢迎的网络浏览器之一,然而有时用户可能会遇到Chrome_elf.dll丢失的问题。该DLL文件是Chrome浏览器的一个重要组成部分,负责启动和管理程序的各种功能。当Chrome_elf.dll丢失时,用户可能无法正常启动Chrome或执行某些功能。本…

MySQL 如何避免 RC 隔离级别下的 INSERT 死锁?

本文分析了 INSERT 及其变种(REPLACE/INSERT ON DUPLICATE KEY UPDATE)的几个场景的死锁及如何避免。 作者:张洛丹,DBA 数据库技术爱好者~ 爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编…

Mysql存储过程与存储函数

文章目录 1. 简介2. 存储过程的特点3. 存储过程操作语法4. 存储过程变量5. 其它语法6. 存储函数 1. 简介 存储过程是事先经过编译并存储在数据库中的一段SQL集合,调用存储过程可以简化应用开发人员的很多工作,减少数据在数据库和应用服务器之间的传输&a…

vs2019 c++开发linux应用

VS2019 C的跨平台开发——Linux开发_Mr_L_Y的博客-CSDN博客前言由于前段时间正好买了一个服务器来跑Tensorflow的推理模型,所以借这个机会把Linux的开发也一并补上。先声明我的服务器是Ubuntu16.04,下面文章的内容也是基于Ubuntu16.04的。为什么标题要写…

MySQL——连接查询

2023.9.4 连接查询相关sql92语句笔记: #连接查询。 又称多表查询,当查询的字段来自多个表时,就会用到连接查询。 #等值连接 /* ①多表等值连接的结果为多表的交集部分 ②n表连接,至少需要n-1个连接条件 ③多表的顺序没有要求 ④一…

论文阅读《Nougat:Neural Optical Understanding for Academic Documents》

摘要 科学知识主要存储在书籍和科学期刊中,通常以PDF的形式。然而PDF格式会导致语义信息的损失,特别是对于数学表达式。我们提出了Nougat,这是一种视觉transformer模型,它执行OCR任务,用于将科学文档处理成标记语言&a…

数据结构之栈的实现(附源码)

目录 一、栈的概念及结构 ​二、栈的实现 三、初学栈的练习题 一、栈的概念及结构 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出…

JS数组迭代方法实操

数组迭代方法有 1. every() 2.some() 3.foreach() 4.map() 5.filter 逐一操作,并简要区分之。 1 every() every() 方法使用指定的函数测试数组中所有的项,在数组的所有项都满足该条件时,才返回true,否则返回false; …

Win10下使用vim9

作为一个经常与文字打交道的Writer,你在学会Vim的基本操作之后,就一定会爱上Vim的。 以下是Windows10_64位(专业版)环境中安装、使用Vim9的全过程,分享一下: 一、下载、安装Vim9 去Vim官网去下载最新的Vi…

切片机制和MR工作机制

InputFormat基类 TextInputFormat:TextInputFormat是默认的FileInputFormat实现类。按行读取每条记录。键是存储该行在整个文件中的起始字节偏移量, LongWritable类型。 CombineTextInputFormat:CombineTextInputFormat用于小文件过多的场景…

React原理 - React Reconciliation-上

目录 扩展学习资料 React Reconciliation Stack Reconciler【15版本、栈协调】 Stack Reconciler-事务性 事务性带来的弊端: 扩展学习资料 名称 链接 备注 官方文档 Reconciliation – React 英文 stack reconciler Implementation Notes – React 英文…

Ubuntu22.04安装Mongodb7.0

Ubuntu安装Mongodb 1.平台支持2.安装MongoDB社区版2.1导入包管理系统使用的公钥2.2为MongoDB创建列表文件2.3重新加载本地包数据库2.4安装MongoDB包1.安装最新版MongoDB2.安装指定版MongoDB 3.运行MongoDB社区版1.目录2.配置文件3.初始化系统4.启动MongoDB5.验证MongoDB是否成功…

Python的pandas库来实现将Excel文件转换为JSON格式的操作

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

物联网应用中蓝牙模块怎么选?_蓝牙模块厂家

在蓝牙模块选型前期,一定要了解应用场景以及需要实现的功能(应用框图),以及功能实现过程中所能提供调用的接口(主从设备,功能),考虑模块供电,尺寸,接收灵敏度…

【已更新建模代码】2023数学建模国赛B题matlab代码--多波束测线问题

一、 问题重述 1.1问题背景 海洋测深是测定水体深度与海底地形的重要任务,有两种主要技术:单波束测 深与多波束测深。单波束适用于简单任务,但多波束可提供更精确的地形数据。多 波束系统的关键在于覆盖宽度与重叠率的设计,以确保…