挑战杯 基于深度学习的植物识别算法 - cnn opencv python

文章目录

  • 0 前言
  • 1 课题背景
  • 2 具体实现
  • 3 数据收集和处理
  • 3 MobileNetV2网络
  • 4 损失函数softmax 交叉熵
    • 4.1 softmax函数
    • 4.2 交叉熵损失函数
  • 5 优化器SGD
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的植物识别算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

植物在地球上是一种非常广泛的生命形式,直接关系到人类的生活环境,目前,植物识别主要依靠相关行业从业人员及有经验专家实践经验,工作量大、效率低。近年来,随着社会科技及经济发展越来越快,计算机硬件进一步更新,性能也日渐提高,数字图像采集设备应用广泛,设备存储空间不断增大,这样大量植物信息可被数字化。同时,基于视频的目标检测在模式识别、机器学习等领域得到快速发展,进而基于图像集分类方法研究得到发展。
本项目基于深度学习实现图像植物识别。

2 具体实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 数据收集和处理

数据是深度学习的基石
数据的主要来源有: 百度图片, 必应图片, 新浪微博, 百度贴吧, 新浪博客和一些专业的植物网站等
爬虫爬取的图像的质量参差不齐, 标签可能有误, 且存在重复文件, 因此必须清洗。清洗方法包括自动化清洗, 半自动化清洗和手工清洗。
自动化清洗包括:

  • 滤除小尺寸图像.
  • 滤除宽高比很大或很小的图像.
  • 滤除灰度图像.
  • 图像去重: 根据图像感知哈希.

半自动化清洗包括:

  • 图像级别的清洗: 利用预先训练的植物/非植物图像分类器对图像文件进行打分, 非植物图像应该有较低的得分; 利用前一阶段的植物分类器对图像文件 (每个文件都有一个预标类别) 进行预测, 取预标类别的概率值为得分, 不属于原预标类别的图像应该有较低的得分. 可以设置阈值, 滤除很低得分的文件; 另外利用得分对图像文件进行重命名, 并在资源管理器选择按文件名排序, 以便于后续手工清洗掉非植物图像和不是预标类别的图像.
  • 类级别的清洗

手工清洗: 人工判断文件夹下图像是否属于文件夹名所标称的物种, 这需要相关的植物学专业知识, 是最耗时且枯燥的环节, 但也凭此认识了不少的植物.

3 MobileNetV2网络

简介

MobileNet网络是Google最近提出的一种小巧而高效的CNN模型,其在accuracy和latency之间做了折中。

主要改进点

相对于MobileNetV1,MobileNetV2 主要改进点:

  • 引入倒残差结构,先升维再降维,增强梯度的传播,显著减少推理期间所需的内存占用(Inverted Residuals)
  • 去掉 Narrow layer(low dimension or depth) 后的 ReLU,保留特征多样性,增强网络的表达能力(Linear Bottlenecks)
  • 网络为全卷积,使得模型可以适应不同尺寸的图像;使用 RELU6(最高输出为 6)激活函数,使得模型在低精度计算下具有更强的鲁棒性
  • MobileNetV2 Inverted residual block 如下所示,若需要下采样,可在 DW 时采用步长为 2 的卷积
  • 小网络使用小的扩张系数(expansion factor),大网络使用大一点的扩张系数(expansion factor),推荐是5~10,论文中 t = 6 t = 6t=6

倒残差结构(Inverted residual block

ResNet的Bottleneck结构是降维->卷积->升维,是两边细中间粗

而MobileNetV2是先升维(6倍)-> 卷积 -> 降维,是沙漏形。
在这里插入图片描述区别于MobileNetV1,
MobileNetV2的卷积结构如下:
在这里插入图片描述
因为DW卷积不改变通道数,所以如果上一层的通道数很低时,DW只能在低维空间提取特征,效果不好。所以V2版本在DW前面加了一层PW用来升维。

同时V2去除了第二个PW的激活函数改用线性激活,因为激活函数在高维空间能够有效地增加非线性,但在低维空间时会破坏特征。由于第二个PW主要的功能是降维,所以不宜再加ReLU6。
在这里插入图片描述
tensorflow相关实现代码

import tensorflow as tfimport numpy as npfrom tensorflow.keras import layers, Sequential, Modelclass ConvBNReLU(layers.Layer):def __init__(self, out_channel, kernel_size=3, strides=1, **kwargs):super(ConvBNReLU, self).__init__(**kwargs)self.conv = layers.Conv2D(filters=out_channel, kernel_size=kernel_size, strides=strides, padding='SAME', use_bias=False,name='Conv2d')self.bn = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='BatchNorm')self.activation = layers.ReLU(max_value=6.0)   # ReLU6def call(self, inputs, training=False, **kargs):x = self.conv(inputs)x = self.bn(x, training=training)x = self.activation(x)return xclass InvertedResidualBlock(layers.Layer):def __init__(self, in_channel, out_channel, strides, expand_ratio, **kwargs):super(InvertedResidualBlock, self).__init__(**kwargs)self.hidden_channel = in_channel * expand_ratioself.use_shortcut = (strides == 1) and (in_channel == out_channel)layer_list = []# first bottleneck does not need 1*1 convif expand_ratio != 1:# 1x1 pointwise convlayer_list.append(ConvBNReLU(out_channel=self.hidden_channel, kernel_size=1, name='expand'))layer_list.extend([# 3x3 depthwise conv layers.DepthwiseConv2D(kernel_size=3, padding='SAME', strides=strides, use_bias=False, name='depthwise'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='depthwise/BatchNorm'),layers.ReLU(max_value=6.0),#1x1 pointwise conv(linear) # linear activation y = x -> no activation functionlayers.Conv2D(filters=out_channel, kernel_size=1, strides=1, padding='SAME', use_bias=False, name='project'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='project/BatchNorm')])self.main_branch = Sequential(layer_list, name='expanded_conv')def call(self, inputs, **kargs):if self.use_shortcut:return inputs + self.main_branch(inputs)else:return self.main_branch(inputs)  


4 损失函数softmax 交叉熵

4.1 softmax函数

Softmax函数由下列公式定义
在这里插入图片描述
softmax 的作用是把 一个序列,变成概率。

在这里插入图片描述

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,所有概率的和将等于1。

python实现

def softmax(x):shift_x = x - np.max(x)    # 防止输入增大时输出为nanexp_x = np.exp(shift_x)return exp_x / np.sum(exp_x)

PyTorch封装的Softmax()函数

dim参数:

  • dim为0时,对所有数据进行softmax计算

  • dim为1时,对某一个维度的列进行softmax计算

  • dim为-1 或者2 时,对某一个维度的行进行softmax计算

    import torch
    x = torch.tensor([2.0,1.0,0.1])
    x.cuda()
    outputs = torch.softmax(x,dim=0)
    print("输入:",x)
    print("输出:",outputs)
    print("输出之和:",outputs.sum())
    

4.2 交叉熵损失函数

定义如下:
在这里插入图片描述
python实现

def cross_entropy(a, y):return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))# tensorflow version
loss = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))# numpy version
loss = np.mean(-np.sum(y_*np.log(y), axis=1))

PyTorch实现
交叉熵函数分为二分类(torch.nn.BCELoss())和多分类函数(torch.nn.CrossEntropyLoss()

# 二分类 损失函数loss = torch.nn.BCELoss()l = loss(pred,real)# 多分类损失函数loss = torch.nn.CrossEntropyLoss()

5 优化器SGD

简介
SGD全称Stochastic Gradient Descent,随机梯度下降,1847年提出。每次选择一个mini-
batch,而不是全部样本,使用梯度下降来更新模型参数。它解决了随机小批量样本的问题,但仍然有自适应学习率、容易卡在梯度较小点等问题。
在这里插入图片描述
pytorch调用方法:

torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False)

相关代码:

    def step(self, closure=None):"""Performs a single optimization step.Arguments:closure (callable, optional): A closure that reevaluates the modeland returns the loss."""loss = Noneif closure is not None:loss = closure()for group in self.param_groups:weight_decay = group['weight_decay'] # 权重衰减系数momentum = group['momentum'] # 动量因子,0.9或0.8dampening = group['dampening'] # 梯度抑制因子nesterov = group['nesterov'] # 是否使用nesterov动量for p in group['params']:if p.grad is None:continued_p = p.grad.dataif weight_decay != 0: # 进行正则化# add_表示原处改变,d_p = d_p + weight_decay*p.datad_p.add_(weight_decay, p.data)if momentum != 0:param_state = self.state[p] # 之前的累计的数据,v(t-1)# 进行动量累计计算if 'momentum_buffer' not in param_state:buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()else:# 之前的动量buf = param_state['momentum_buffer']# buf= buf*momentum + (1-dampening)*d_pbuf.mul_(momentum).add_(1 - dampening, d_p)if nesterov: # 使用neterov动量# d_p= d_p + momentum*bufd_p = d_p.add(momentum, buf)else:d_p = buf# p = p - lr*d_pp.data.add_(-group['lr'], d_p)return loss

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/725410.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

预览和真机调试无法连接服务器(报网络错误),开发者工具可以正常用

预览和真机调试无法连接服务器&#xff08;报网络错误&#xff09;&#xff0c;开发者工具可以正常用 方法&#xff1a; localhost替换为下面的ip&#xff0c;手机和电脑都链接同一个wifi // let RootPath http://127.0.0.1:8081;//或者http://localhost:8081let RootPath ht…

鸿蒙Harmony应用开发—ArkTS声明式开发(事件独占控制)

设置组件是否独占事件&#xff0c;事件范围包括组件自带的事件和开发者自定义的点击、触摸、手势事件。 在一个窗口内&#xff0c;设置了独占控制的组件上的事件如果首先响应&#xff0c;则本次交互只允许此组件上设置的事件响应&#xff0c;窗口内其他组件上的事件不会响应。 …

AndroidStudio连不上adb报错ADB Connection Error

之前笔者一直通过AndroidStudio来看日志&#xff0c;也一直用的一套自己的SDK&#xff0c;用了好几年了。 但是突然有一天&#xff0c;AndroidStudio启动后就弹出警告窗&#xff1a;ADB Connection Error&#xff0c;如下&#xff1a; 在Event Log面板还持续性的输出&#x…

C++——string类

前言&#xff1a;哈喽小伙伴们&#xff0c;从这篇文章开始我们将进行若干个C中的重要的类容器的学习。本篇文章将讲解第一个类容器——string。 目录 一.什么是string类 二.string类常见接口 1.string类对象的常见构造 2.string类对象的容量操作 3. string类对象的访问及遍…

微软亚太区AI智能应用创新业务负责人许豪,将出席“ISIG-AIGC技术与应用发展峰会”

3月16日&#xff0c;第四届「ISIG中国产业智能大会」将在上海中庚聚龙酒店拉开序幕。本届大会由苏州市金融科技协会指导&#xff0c;企智未来科技&#xff08;AIGC开放社区、RPA中国、LowCode低码时代&#xff09;主办。大会旨在聚合每一位产业成员的力量&#xff0c;深入探索A…

16 PyTorch 神经网络基础【李沐动手学深度学习v2】

1. 模型构造 在构造自定义块之前&#xff0c;我们先回顾一下多层感知机的代码。 下面的代码生成一个网络&#xff0c;其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层&#xff0c; 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。 层和块 构造单层神经网咯…

智慧安防视频远程监控平台EasyCVR集成后播放只有一帧画面是什么原因?

智慧安防视频监控平台EasyCVR能在复杂的网络环境中&#xff08;专网、局域网、广域网、VPN、公网等&#xff09;将前端海量的设备进行统一集中接入与视频汇聚管理&#xff0c;平台可支持的接入协议包括&#xff1a;国标GB28181、RTSP/Onvif、RTMP&#xff0c;以及厂家的私有协议…

【Power Apps】实现一个响应式的对话框功能

在我们开始之前需要把这里关一下&#xff0c;不然的话会影响响应式布局的效果。 首先我们添加一个垂直容器作为遮罩层。 遮罩层的宽高直接设置为跟随父元素即可&#xff0c;让遮罩层占满整个屏幕&#xff0c;再把填充色改为有一定透明度的黑色&#xff0c;形成遮罩效果。 然后…

【b站咸虾米】1 Vue介绍 2021最新Vue从基础到实例高级_vue2_vuecli脚手架博客案例

课程地址&#xff1a;【2021最新Vue从基础到实例高级_vue2_vuecli脚手架博客案例】 https://www.bilibili.com/video/BV1pz4y1S7bC/?share_sourcecopy_web&vd_sourceb1cb921b73fe3808550eaf2224d1c155 感觉尚硅谷的Vue看完忘得差不多了&#xff0c;且之前学过咸虾米的unia…

Codeforces Round 932 (Div. 2) --- C. Messenger in MAC --- 题解

C Messenger in MAC 题目大意&#xff1a; 思路解析&#xff1a; 答案计算为 , 可以发现当所选的几个信息固定后&#xff0c;其实后面的一项就变为b_max - b_min&#xff0c;得到了这个结论之后&#xff0c;其实我们可以直接把整个信息按照b进行排序&#xff0c;枚举l,r&am…

机器学习:探索计算机的自我进化之路

当我们谈论机器学习时&#xff0c;我们在谈论什么呢&#xff1f;机器学习是一门跨学科的学科&#xff0c;它使用计算机模拟或实现人类学习行为&#xff0c;通过不断地获取新的知识和技能&#xff0c;重新组织已有的知识结构&#xff0c;从而提高自身的性能。简单来说&#xff0…

基于OpenCV的图形分析辨认02

目录 一、前言 二、实验目的 三、实验内容 四、实验过程 一、前言 编程语言&#xff1a;Python&#xff0c;编程软件&#xff1a;vscode或pycharm&#xff0c;必备的第三方库&#xff1a;OpenCV&#xff0c;numpy&#xff0c;matplotlib&#xff0c;os等等。 关于OpenCV&…

LVS负载均衡集群基础概念

目录 一、集群 1、集群概述 1.1 什么是集群 1.2 集群系统扩展方式 1.2.1 Scale UP&#xff08;纵向扩展&#xff09; 1.2.2 Scale OUT&#xff08;横向扩展&#xff09; 1.2.3 区别 1.3 分布式系统 1.4 分布式与集群 1.5 集群设计原则 1.6 集群设计实现 1.6.1 基础…

spring boot3token拦截器链的设计与实现

⛰️个人主页: 蒾酒 &#x1f525;系列专栏&#xff1a;《spring boot实战》 &#x1f30a;山高路远&#xff0c;行路漫漫&#xff0c;终有归途。 目录 写在前面 流程分析 需要清楚的 实现步骤 1.定义拦截器 2.创建拦截器链配置类 3.配置拦截器链顺序 4.配置拦截…

3.4日java作业---华为手机小米手机入库问题

​​​​​​​ ​​​​​​​ ​​​​​​​ 【案例】 任务描述 现要对华为和小米两种手机产品进行入库&#xff0c;本案例要求编写一个模拟商品入库的程序&#xff0c;可以在控制台输入入库商品的数量&#xff0c;最后打印出仓库中所有商品详细信息…

C语言指针(5):strlen与sizeof的区别及指针笔试题练习

1、sizeof和strlen的对比 sizeof sizeof计算变量所占内存内存空间⼤⼩的&#xff0c;单位是字节&#xff0c;如果操作数是类型的话&#xff0c;计算的是使⽤类型创建的变量所占内存空间的⼤⼩。简单来说&#xff0c;sizeof 只关注占⽤内存空间的⼤⼩&#xff0c;不在乎内存中存…

详解高质量增长的关键动力:ABM、数据、AI与业财融合

企业要穿越周期&#xff0c;不能仅靠节衣缩食&#xff0c;增长与盈利仍是必须。当盲目做大规模无法带来可持续发展&#xff0c;高质量增长便成为必须。在降本增效之上&#xff0c;企业需要变革增长模式。 在纷享销客的《领创者》开年直播上&#xff0c;纷享销客联合创始人、经…

阿里云服务器Ngnix配置SSL证书开启HTTPS访问

文章目录 前言一、SSL证书是什么&#xff1f;二、如何获取免费SSL证书三、Ngnix配置SSL证书总结 前言 很多童鞋的网站默认访问都是通过80端口的Http服务进行访问&#xff0c;往往都会提示不安全&#xff0c;很多人以为Https有多么高大上&#xff0c;实际不然&#xff0c;他只是…

【QT】QDialog/ QMessageBox/提示对话框/颜色(文字)------对话框

QDialog—对话框 什么是对话框&#xff0c;如下样式 非模态对话框&#xff0c;即打开以后&#xff0c;我还可以对其他框进行操作。 模态对话框&#xff0c;打开以后&#xff0c;其他框都不能再操作了 模态对话框是阻塞对话框 QDialog dig(this);//显示模态对话框dig.exec();…

基于redis实现用户登陆

因为session有数据共享问题&#xff0c;不同tomcat服务器中的session不能共享&#xff0c;之后负载均衡就无法实现。所以我们用redis代替session。redis可以被多个tomcat服务器共享&#xff0c;redis基于内存。 之前的session可以看做登陆凭证&#xff0c;本次登陆凭证由sessi…