土地利用数据分类过程教学/土地利用分类/遥感解译/土地利用获取来源介绍/地理数据获取

    本篇主要介绍如何对影像数据进行分类解译,及过程教学,示例数据下载链接:数据下载链接

一、背景介绍
           土地是人类赖以生存与发展的重要资源和物质保障,在“人口-资源-环境-发展(PRED)”复合系统 中,土地资源处于基础地位。随着现代社会人口的不断增长以及工业化、城市化进程的加速,人类对土地资源的开发利用强度不断增大,对土地资源的不合理利用,导致了严重的水土流失和生态环境恶化,人类面临的土地利用问题较历史上任何时候都更为突出。土地利用现状分析是在土地利用现状调查的基础上进行的。通过对土地资源的数量与质量、结构与分布以及土地利用现状与开发潜力等方面的分析,明确规划区域内土地资源的整体优势与劣势、制约优势土地资源开发利用的主要因素,揭示土地利用中存在的问题,从而明确土地资源开发利用的方向和重点,提出改善土地利用、提高土地利用率和生产力的对策和途径,既可以发挥区域资源优势、强化区域土地系统功能,又强调人地协调发展的土地利用规划,为制定土地利用规划提供重要的科学依据。因此,进行土地利用现状分析,对促进土地利用结构的调整与优化、综合整治、保护土地、充分挖掘土地利用上的潜力以及保持国民经济的持续健康发展等都具有十分重要的意义。 

二、计算过程        

1.数据获取与数据准备

      本研究采用的遥感影像数据来自美国马里兰大学和中国科学院国际科学数据服务平台,均采用美国陆地卫星于1990年和2018年所拍摄的LandsatTM/ OLI30m遥感影像,云量均接近0%。本文的遥感影像成像时间不一致,根据瞬时状态下最大限度使图像上尽可能丰富地反映地表信息的原则,本次遥感调查主要选择5月下旬至6月中旬或8月下旬至9月中旬的图像,由于地物信息较清楚,由此带来的地物反射光谱差异显著,容易识别,影像解译比较容易。

2.数据预处理

      在对影像数据进行分类解译之前,首先要对数据做预处理工作,主要步骤有:

    (1)波段选择及融合

      本文采用最佳指数法(Optimum Index Factor,简称)和特征值法相结合,共同确定了最佳波段组合,也就是Landsat5-TM4、3、2波段,Landsat8-OLI5、4、3波段,分别赋予红、绿、蓝色作为标准假彩色合成的RGB波段。这一假彩色影像最关键的是突出了植被特征,并且能提供丰富的信息,能充分显示各种地物特征的差别,便于分类,可以保证分类的准确性。

    (2)图像几何校正与配准

      采用的Landsat系列图像已经在中国遥感卫星地面站进行过辐射校正和几何粗校正,但为了使研究结果更加的科学、可信,则必须的对影像进行几何精校正。几何精校正是利用地面控制点(Ground control Point,GPC)对由各种随机因素引起的遥感图像进行几何畸变的校正。本研究以研究区的地形图作为参考图像,必要时辅以实地考察的GPS点,采用多项式几何纠正计算模型,对遥感影像进行几何精校正。

    (3)图像增强处理

      传感器获取的遥感图像含有大量地物特征信息,在图像上这些特征信息以灰度形式表现出来,当地物特征间表现的灰度差很小时,目视判读就无法辨认,图像增强处理是的目的在于突出图像中有用的信息,扩大不同图像特征之间的差别,从而提高对图像的解译和分析能力。遥感数字图像增强处理一般可分为两大类:频域法和空间域法。本文主要采用空间域图像增强方法,其遵循视觉效果比较好、计算相对简单、合乎应用要求的原则。另外,在后面遥感图像分类的新波段变量构造部分还应用了NDVI指数以区分植被和非植被以提高分类精度。

    (4)影像拼接与裁剪

      本案例中的研究区域为西宁市,则遥感影像数据需要覆盖整个研究区,因此需要进行影像拼接,进行拼接时首先要参照某一遥感影像,将其它遥感影像进行直方图匹配处理,使得所有用到的遥感影像具有基本一致的色调,然后再将要用到的影像进行无缝的拼接处理,之后经过裁剪得到覆盖整个研究区的遥感影像。

3.分类方法

      本次服务是基于Landsat等遥感信息基础上,在多位专家的参与下,采用全数字人机交互作业方法,同时参照有关地理图件和统计资料,结合外业实地考察验证,对地物的几何形状,颜色特征、纹理特征和空间分布情况进行分析,并在综合各位专家意见后,建立遥感影像解译标志。在内业建立解译标志与实现数据获取的基础上,不断的对解译模板进行修改,直到修改的模板经过评价以后比较满意为止,以提高土地利用/覆盖类型精度。动态图斑数据主要采用“动态分割图斑法”。参照国内外现有土地利用/土地覆盖 的分类体系,结合本项目的开展的目的和要求以及遥感信息源的情况,制定了有6个一级分类,25个二级分类的土地利用/土地覆盖分类体系。

     在分类过程中,由于遥感图像自身的空间分辨率,同物异谱以及异物同谱现象广泛存在,所以错分和误分的情况很常见,因此对分类结果要做进一步的处理工作,也就是去除小图斑的工作,我们常称之为分类后处理。常用的分类后处理方法有:聚类统计(Clump)、过滤分析(Sieve)、去除分析(Eliminate)和分类重编码(Recode)等。

4.质量控制与检查

      各工序过程质量按要求进行过程检查 ,需100%检查。

     土地利用/覆盖数据抽样检查

      对获取的土地利用/覆盖数据产品进行空间抽样检查,验证土地利用/覆盖数据类型定性是否正确。验证的方式主要依靠高分影像(要考虑影像的时效性)与野外实地验证相结合的方式作业,未达到抽样精度90%的重新修正数据。

5.技术服务成果展示如下图

原文链接:https://bbs.csdn.net/forums/gisrs?spm=1001.2014.3001.6682

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/724540.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最强模型Claude 3 Haiku速通指南在此!保姆级教学拿脚都能学会!

🎉🎉欢迎光临,终于等到你啦🎉🎉 🏅我是苏泽,一位对技术充满热情的探索者和分享者。🚀🚀 🌟持续更新的专栏《Spring 狂野之旅:从入门到入魔》 &a…

Hack The Box-Perfection

目录 信息收集 nmap dirsearch gobuster whatweb WEB 信息收集 ffuf 漏洞探索 漏洞发现 模板注入 反弹shell 提权 get user and flag 信息收集 ssh登录&get root and flag 信息收集 nmap 端口探测┌──(root㉿ru)-[~/kali/hackthebox] └─# nmap -p- 10…

[R] ggplot2 - exercise (“fill =“)

We have made the plots like: Lets practice with what we have learnt in: [R] How to communicate with your data? - ggplot2-CSDN博客https://blog.csdn.net/m0_74331272/article/details/136513694 #tutorial 5 -script #Exercise 1 #1.1# ggplot(smoking_and_drug_use_…

微信小程序开发系列(八)·微信小程序页面的划分以及轮播图区域的绘制和图片的添加

目录 1. 划分页面结构 2. 轮播图区域绘制 3. 轮播图图片添加 1. 划分页面结构 最终我们想达到如下效果&#xff1a; 其页面分为四层结构&#xff0c;因此我们需要配置四块view&#xff0c;代码如下&#xff1a; <!-- view 小程序提供的容器组件&#xff0c;可以当成…

【学习】torch.nn.CrossEntropyLoss交叉熵损失函数

交叉熵损失函数torch.nn.CrossEntropyLoss 交叉熵主要是用来判定实际的输出与期望的输出的接近程度&#xff0c;为什么这么说呢&#xff0c;举个例子&#xff1a; 在做分类的训练的时候&#xff0c;如果一个样本属于第K类&#xff0c;那么这个类别所对应的输出节点的输出值应…

96、C++ 性能优化一览

在对 C++ 版本的 resnet50 经过大约 5 个版本的优化之后,性能也基本达到了预期。至少利用手写的 resnet50 在 CPU 上推理一张图片感觉不到卡顿了。 下面对这几个版本的性能优化做一个总结。 初始版本1 第一版本的 C++ 代码,并没有考虑性能问题,仅仅是想按照手写 resnet50 …

操作系统原理与实验——实验四短进程优先调度

实验指南 运行环境&#xff1a; Dev c 算法思想&#xff1a; 短进程优先 (SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程&#xff0c;将处理机分配给它&#xff0c;使它立即执行并一直执行到完成 核心数据结构&#xff1a; typedef struct data{ int hour; int…

Docker镜像操作介绍

一、镜像操作 镜像的操作可分为&#xff1a; 拉取镜像&#xff1a;拉取远程仓库的镜像到本地 docker pull重命名镜像&#xff1a;使用docker tag 命令重命名镜像查看镜像&#xff1a;使用docker image ls 或者 docker images命令查看本地已经存在的镜像删除镜像&#xff1a;删…

蓝桥杯倒计时 38 天

整数二分模板&#xff1a;数的范围 二分的本质不是单调性&#xff0c;而是二分出能满足某种性质使得将整数分成两半。 思考&#xff1a;模板题&#xff0c;模板记熟就能做 #include<iostream> using namespace std; int n,q; const int N 1e510; int a[N]; int main…

Jenkins 将shell脚本启动方式修改为bash

platform"arm x86" if [[ "$platform" ~ "arm" ]] thenecho "arm" fi最近在调试Jenkins实现的一些功能&#xff0c;发现在本地可以运行的脚本内容到了Jenkins里面就没办法运行了&#xff0c;不是提示unexpected operator就是提示[[ : …

Python 系统学习总结(基础语法+函数+数据容器+文件+异常+包+面向对象)

&#x1f525;博客主页&#xff1a; A_SHOWY&#x1f3a5;系列专栏&#xff1a;力扣刷题总结录 数据结构 云计算 数字图像处理 力扣每日一题_ 六天时间系统学习Python基础总结&#xff0c;目前不包括可视化部分&#xff0c;其他部分基本齐全&#xff0c;总结记录&#xff0…

网络编程 24/3/6 作业

1、数据库的增删改 #include <myhead.h> int main(int argc, const char *argv[]) {//定义数据库句柄指针sqlite3 *kdbNULL;//打开数据库&#xff0c;不存在则创建if(sqlite3_open("./my.db",&kdb)!SQLITE_OK){printf("sqlite3_open error\n");…

全连接神经网络算法原理(激活函数、前向传播、梯度下降法、损失函数、反向传播)

文章目录 前言1、全连接神经网络的整体结构&#xff1a;全连接神经网络模型是由输入层、隐藏层、输出层所组成&#xff0c;全连接神经网络结构如下图所示&#xff1a;全连接神经网络的每一层都是由一个一个的神经元所组成的&#xff0c;因此只要搞清楚神经元的本质就可以搞清楚…

算法竞赛基础:树状数组

算法竞赛基础&#xff1a;树状数组 是什么&#xff1f; 树状数组虽然语义上是树状&#xff0c;但是实际上还是一个数组。 树状数组的功能就是单点和区间的修改和查询。 例如&#xff0c;如果想增加一个点的值&#xff0c;那么你需要让其上方所有能对齐的树状数组c全部增加相同…

QChart柱状图

//柱状图// 创建柱状图数据QBarSet *set0 new QBarSet("");*set0 << 1601 << 974 << 655 << 362;QBarSeries *series new QBarSeries();series->append(set0);set0->setColor(QColor("#F5834B"));// 创建柱状图QChart *ch…

github双因子认证

最近换了个安卓手机&#xff0c;打算让之前的苹果手机退役了&#xff0c;所以需要重新搞GitHub的Two-factor authentication 步骤如下&#xff1a; 1. 访问安全中心 https://github.com/settings/security 2. 点击Authenticator app右侧按钮 3. 下载腾讯身份验证器&#xff…

CSS常见布局方式

一、静态布局&#xff08;Static Layout&#xff09; 既传统web设计 就是不管浏览器尺寸多少&#xff0c;网页布局就按当时写代码的布局来布置; 块级元素&#xff1a;每个块级元素会在上一个元素下面另起一行&#xff0c;他们会被设置好的margin分离。块级元素是垂直组织的。 …

python跨文件夹调用

如图所示&#xff0c;我们要在bin文件夹下的run_patchcore.py文件中调用src/patchcore文件夹下的backbone.py, common.py等文件。如第13行 方法1&#xff1a;将patchcore的上一层目录src添加到环境变量中 run_patchcore.py 文件中写入import sys sys.path.append(/home/rui/P…

苹果群控软件开发必不可少的代码!

在开发苹果群控软件时&#xff0c;编写高质量的代码是至关重要的&#xff0c;这些代码不仅需要实现功能&#xff0c;还需要保证软件的稳定性、安全性和可扩展性&#xff0c;本文将分享四段在苹果群控软件开发中必不可少的源代码&#xff0c;并解释每段代码的作用和实现原理。 一…

HM2019创建分析模型

步骤一&#xff1a;查看单元类类型&#xff08;通过card edit&#xff09;&#xff0c;然后展开模型查看模型信息&#xff1b;步骤二&#xff1a;为材料集里添加新的材料 材料:Al 弹性模量E:70000 泊松比NU:0.33 其中&#xff1a;MAT1表示各向同性材料&#xff0c;E表示弹…