支持向量机(一)

文章目录

  • 前言
  • 分析
  • 数据集线性可分情况下的支持向量机
    • 原始问题凸优化包解法
    • 对偶问题凸优化包解法
  • 数据集线性不可分情况下的线性支持向量机与软间隔最大化

前言

  • 在支持向量机中,理论逻辑很简单:最大化最小的几何间隔。但是实际编写代码过程中有一个小点需要注意。总是把二分类的类别分为01,这样就导致我的目标函数跟算法描述的就不一样,所以求解结果就不正确。
  • 同时还有第二个要注意的就是凸优化包cvxpy中各种运算的表示方法,比如凸优化中常见的二次方程的表示,变量的默认形状等,要查看官方文档才能熟悉。变量的默认形状为列向量。

参考:

  • 李航:统计学习方法
  • CVXPY

分析

支持向量机算法中,我们的训练数据除了是两种类别以外,类别的编号也有要求,分别是1-1,只有这样,我们才能求每个样本所对应的函数间隔 D = y i ( w x i + b ) D=y_i(wx_i+b) D=yi(wxi+b)和几何间隔 D = y i w x i + b ∥ w ∥ 2 D=y_i\frac{wx_i+b}{\|w\|_2} D=yiw2wxi+b,在这种类别标签的情况下,预测值 w x i + b wx_i+b wxi+b与真实值 y i y_i yi之间的乘积才有意义。
预测与真实相同,乘积才会是大于0的;预测与真实相反,乘积就是小于0的。只有这样后面的目标函数最大化几何间隔才有意义。
重新表述一下可分数据集上支持向量机的目标函数和约束条件:
max λ s.t. y i w x i + b ∥ w ∥ 2 ≥ λ \begin{align*} &\textbf{max}&\lambda \\ &\textbf{s.t.} &y_i\frac{wx_i+b}{\|w\|_2}\ge\lambda \end{align*} maxs.t.λyiw2wxi+bλ

如果我们使用类别标签为01,那么当错误分类时,几何间隔为0,无法指导参数修改。所以必须要使用1-1

数据集线性可分情况下的支持向量机

此时有两种求法,一种是用原始算法,直接用cvxpy函数包求解原始的这个凸优化问题,并把问题变为下述形式:
max t ∥ w ∥ 2 s.t. y i ( w x i + b ) ≥ t \begin{align*} &\textbf{max}&\frac{t}{\|w\|_2} \\ &\textbf{s.t.} &y_i{(wx_i+b)}\ge t \end{align*} maxs.t.w2tyi(wxi+b)t

由于通过同比例放大w,b可以实现条件中左边的乘积大小的任意变换,所以我们修改t 1 1 1。上述凸优化问题就变为:
min ∥ w ∥ 2 s.t. y i ( w x i + b ) ≥ 1 \begin{align*} &\textbf{min}&{\|w\|_2} \\ &\textbf{s.t.} &y_i{(wx_i+b)}\ge 1 \end{align*} mins.t.w2yi(wxi+b)1

第二种方法就是将原始问题使用拉格朗日乘子法变换为对偶问题,将加入条件和拉格朗日乘子的拉格朗日函数进行求导,并将求导得到的关系式带入拉格朗日函数,这样就可以得到对偶问题。

原始问题凸优化包解法

import numpy as np
import cvxpy as cp
#生成符合要求的样本数据
np.random.seed(3)
train_x=np.random.randn(2,2)
weight_x=np.random.randn(2)
bias_x=np.random.randn(1)
train_y=np.where(train_x@weight_x+bias_x<0,-1,1).reshape(2,-1)
print(train_x,train_y)
#求解对偶凸优化问题
w=cp.Variable(2)
b=cp.Variable(1)
obj=cp.Minimize(1/2*cp.sum_squares(w))
cons=[train_y[0]*(train_x@w+b)[0]>=1,train_y[1]*(train_x@w+b)[1]>=1]
prob=cp.Problem(obj,cons)
result=prob.solve()
#输出拉格朗日乘子的和最优化的目标函数值以及权重w
print(f'w.value,result,b.value:{w.value,result,b.value}')

结果如下:

[[ 1.78862847  0.43650985][ 0.09649747 -1.8634927 ]] [[-1][ 1]]
w.value,result,b.value:(array([-0.41507783, -0.56418804]), 0.24529887505030906, array([-0.01130633]))

对偶问题凸优化包解法

本例子中我们使用了小规模的数据,只有两个样本,所以这两个样本肯定都是支持向量,也就是对应的拉格朗日乘子都不为0,对于大规模样本数据的情况,如果不在分界面上,那么对应的拉格朗日乘子为0,也就不是支持向量。拉格朗日乘子不为0的肯定就是支持向量。

import numpy as np
import cvxpy as cp
#生成符合要求的样本数据
np.random.seed(3)
train_x=np.random.randn(2,2)
weight_x=np.random.randn(2)
bias_x=np.random.randn(1)
train_y=np.where(train_x@weight_x+bias_x<0,-1,1).reshape(2,-1)
print(train_x,train_y)
#求解对偶凸优化问题
alpha=cp.Variable(2)
obj=cp.Minimize(1/2*cp.quad_form(alpha,(train_x@train_x.T)*(train_y@train_y.T))-cp.sum(alpha))
cons=[alpha>=0,train_y.T@alpha>=0,train_y.T@alpha<=0]
prob=cp.Problem(obj,cons)
result=prob.solve()
#输出拉格朗日乘子的和最优化的目标函数值以及权重w
print(f'alpha.value,result,w:{alpha.value,result,np.array(alpha.value.reshape(2,-1)*train_y*train_x).sum(axis=0)}')
#检验支持向量机求出的分离面是否与这两个样本之间的连线垂直
w=np.array(alpha.value.reshape(2,-1)*train_y*train_x).sum(axis=0)
np.array(train_x[0,:]-train_x[1,:]).reshape(1,-1)@np.array([-w[1]/w[0],1]).reshape(2,-1)

结果如下:

[[ 1.78862847  0.43650985][ 0.09649747 -1.8634927 ]] [[-1][ 1]]
alpha.value,result,w:(array([0.24529888, 0.24529888]), -0.24529887505030898, array([-0.41507783, -0.56418804]))
array([[-4.4408921e-16]])

至于参数b,我们可以通过支持向量所对应的等式求出。
我们可以观察一下原始问题与对偶问题的解答是否一致。

数据集线性不可分情况下的线性支持向量机与软间隔最大化

软间隔顾名思义就是给原来的间隔留下一点宽容量,给那些不容易分正确的留一点余地。同时对于这些余地进行惩罚所得到的分割面,以上面线性可分的数据做演示。

import numpy as np
import cvxpy as cp
#生成符合要求的样本数据
np.random.seed(3)
train_x=np.random.randn(2,2)
weight_x=np.random.randn(2)
bias_x=np.random.randn(1)
train_y=np.where(train_x@weight_x+bias_x<0,-1,1).reshape(2,-1)
print(train_x,train_y)
#求解对偶凸优化问题
w=cp.Variable(2)
b=cp.Variable(1)
softgap=cp.Variable(2)
obj=cp.Minimize(1/2*cp.sum_squares(w)+100*cp.sum(softgap))
cons=[train_y[0]*(train_x@w+b)[0]>=1-softgap[0],train_y[1]*(train_x@w+b)[1]>=1-softgap[1],softgap>=0]
prob=cp.Problem(obj,cons)
result=prob.solve()
#输出拉格朗日乘子的和最优化的目标函数值以及权重w
print(f'w.value,result,b.value,softgap.value:{w.value,result,b.value,softgap.value}')

结果如下:

[[ 1.78862847  0.43650985][ 0.09649747 -1.8634927 ]] [[-1][ 1]]
w.value,result,b.value,softgap.value:(array([-0.41507783, -0.56418804]), 0.24529887505030906, array([-0.01130633]), array([-2.90746355e-22,  1.53881391e-22]))

可以看出在线性可分的的情况下软间隔不起作用。
那么我们制造一些线性不可分的数据,来测试一下。

import numpy as np
import cvxpy as cp
#生成符合要求的样本数据
np.random.seed(3)
train_x=np.array([[0,0],[1,0],[2,0]])
train_y=np.array([-1,1,-1]).reshape(3,-1)
print(train_x,train_y)
#求解对偶凸优化问题
w=cp.Variable(2)
b=cp.Variable(1)
softgap=cp.Variable(3)
obj=cp.Minimize(1/2*cp.sum_squares(w)+0.1*cp.sum(softgap))
cons=[train_y[0]*(train_x@w+b)[0]>=1-softgap[0],train_y[1]*(train_x@w+b)[1]>=1-softgap[1],train_y[2]*(train_x@w+b)[2]>=1-softgap[2],softgap>=0]
prob=cp.Problem(obj,cons)
result=prob.solve()
#输出拉格朗日乘子的和最优化的目标函数值以及权重w
print(f'w.value,result,b.value,softgap.value:{w.value,result,b.value,softgap.value}')

结果如下:

[[0 0][1 0][2 0]] [[-1][ 1][-1]]
w.value,result,b.value,softgap.value:(array([9.07653476e-18, 0.00000000e+00]), 0.2, array([-1.]), array([ 8.59013373e-23,  2.00000000e+00, -8.59013423e-23]))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/72408.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

试用CSDN提供的AI创作助手生成关于Java个版本和未来发展的文章【AI】

本文是使用CSDN提供的AI创作帮手生成&#xff0c;出本句说明外其余均有AI生成&#xff0c;下面是我让AI列举各个Java版本的新功能和特点。 各个Java版本的新功能和特点 功能和特点&#xff1a; Java 8新功能和特点&#xff1a; Lambda表达式函数式接口方法引用Stream API接…

深入探讨Java Stream流:数据处理的新思维

文章目录 1. 流式思想1.1 输入流与输出流1.2 Stream流 2. 使用Stream流的步骤3. 获取Stream流3.1 容器3.2 数组 4. Stream流中间操作方法4.1 filter(Predicate<? super T> predicate)4.2 limit(long maxSize)4.3 skip(long n)4.4 distinct()4.5 sorted() 和 sorted(Comp…

Java使用pdfbox将pdf转图片

前言 目前比较主流的两种转pdf的方式&#xff0c;就是pdfbox和icepdf&#xff0c;两种我都尝试了下&#xff0c;icepdf解析出来有时候会出现中文显示不出来&#xff0c;网上的解决方式又特别麻烦&#xff0c;不是安装字体&#xff0c;就是重写底层类&#xff0c;所以我选择了p…

【Spring】aop的底层原理

&#x1f384;欢迎来到边境矢梦的csdn博文&#x1f384; &#x1f384;本文主要梳理 Spring 中的切面编程aop的底层原理和重点注意的地方 &#x1f384; &#x1f308;我是边境矢梦&#xff0c;一个正在为秋招和算法竞赛做准备的学生&#x1f308; &#x1f386;喜欢的朋友可以…

vue递归组件

父组件&#xff1a; <template><div><treeVue :treeData"treeData"></treeVue></div> </template><script setup lang"ts"> import { reactive } from "vue"; import treeVue from "./tree.vue…

Linux查看指定端口是否被占用

在Linux中&#xff0c;可以使用多种方法来检查一个特定端口&#xff08;例如3306&#xff0c;通常由MySQL使用&#xff09;是否被占用&#xff1a; 使用netstat命令: 如果系统中已安装了netstat&#xff0c;可以使用以下命令检查3306端口&#xff1a; netstat -tuln | grep 330…

人体呼吸存在传感器成品,毫米波雷达探测感知技术,引领智能家居新潮流

随着科技的不断进步和人们生活质量的提高&#xff0c;智能化家居逐渐成为一种时尚和生活方式。 人体存在传感器作为智能家居中的重要组成部分&#xff0c;能够实时监测环境中人体是否存在&#xff0c;为智能家居系统提供更加精准的控制和联动。 在这个充满创新的时代&#xf…

科技资讯|苹果Vision Pro头显申请游戏手柄专利和商标

苹果集虚拟现实和增强现实于一体的头戴式设备 Vision Pro 推出一个月后&#xff0c;美国专利局公布了两项苹果公司申请的游戏手柄专利&#xff0c;其中一项的专利图如下图所示。据 PatentlyApple 报道&#xff0c;虽然专利本身并不能保证苹果公司会推出游戏手柄&#xff0c;但是…

Redis6搭建高可用的多主多从集群

Redis6搭建高可用的多主多从集群 环境准备搭建redis6集群安装redis6修改配置文件修改cluster-enabled修改cluster-config-file修改cluster-node-timeout 启动集群 环境准备 首先我们需要6台redis&#xff0c;那么为啥是6太呢&#xff1f;是因为我们要部署多master和多slaver集…

07-Spring Cloud

1、如何设计一个注册中心&#xff1f; 高可用&#xff1a;通过集群的方式 高并发&#xff1a;减少响应时间、提高吞吐量 并发用户数等&#xff0c;通过增加服务器性能、 扩展服务实例的方式 高性能&#xff1a;程序处理速度 考虑 数据存储结构、通信机制、集群同步。 集群…

C++中引用详解!

前言&#xff1a; 本文旨在讲解C中引用的相关操作&#xff0c;以及引用的一些注意事项&#xff01;搬好小板凳&#xff0c;干货来了&#xff01; 引用的概念 何谓引用呢&#xff1f;引用其实很容易理解&#xff0c;比如李华这个同学&#xff0c;他因为很调皮&#xff0c;所以…

【每日一题Day311】LC1761一个图中连通三元组的最小度数 | 枚举

一个图中连通三元组的最小度数【LC1761】 给你一个无向图&#xff0c;整数 n 表示图中节点的数目&#xff0c;edges 数组表示图中的边&#xff0c;其中 edges[i] [ui, vi] &#xff0c;表示 ui 和 vi 之间有一条无向边。 一个 连通三元组 指的是 三个 节点组成的集合且这三个点…

目标检测网络系列之R-CNN

文章目录 前言目标检测任务数据集任务区别评判标准的区别IoU 交并比P-R曲线mAPR-CNNR-CNN的基本逻辑候选框挑选Efficient Graph-Based Image Segmentation算法Selective Search for Object Recognition尺寸变换特征提取与非极大值抑制非极大值抑制(NMS, Non-maximum suppressio…

提高数值预报水平:WRFDA资料同化实践技术应用

查看原文>>>WRFDA资料同化实践技术应用 数值预报已经成为提升预报质量的重要手段&#xff0c;而模式初值质量是决定数值预报质量的重要环节。资料同化作为提高模式初值质量的有效方法&#xff0c;成为当前气象、海洋和大气环境和水文等诸多领域科研、业务预报中的关键…

maven的scope总结

scope类型 compiletestprovidedruntimesystemimport compile 编译依赖范围。如果没有指定&#xff0c;就会默认使用该依赖范围。使用此依赖范围的Maven 依赖&#xff0c;对于编译、测试、运行三种classpath 都有效。大部分是这种&#xff0c;在编译、测试和运行的时候都需要使…

mysql5.7-基于docker-compose搭建主从同步

一、环境信息 系统版本&#xff1a;CentOS Linux release 7.9.2009 (Core) cat /etc/centos-release Docker版本&#xff1a;Docker version 20.10.6, build 370c289 docker --version Docker-compose版本&#xff1a;Docker Compose version v2.10.2 docker-compose --versio…

paddlenlp进行训练UIE-X相关问题

问题一:使用UIE-X 进行实体抽取的时候,如何提升OCR的识别(中文)准确率 问题描述:在使用UIE-X 模型微调时,进行实体抽取的时候,如何提升OCR的识别(中文)准确率,目前提取关系正常,但OCR识别结果存在错别字和未识别到的部分 OCR那里检测和识别要标注训练调整 OCR效果没有PA…

解密Kubernetes(K8s)集群的创建过程和关键步骤

文章目录 1. 准备环境2. 安装Docker3. 安装Kubernetes在Master节点上执行以下步骤&#xff1a;安装kubeadm、kubelet和kubectl初始化Master节点 在工作节点上执行以下步骤&#xff1a;加入集群 4. 设置Kubeconfig5. 安装网络插件6. 验证集群7. 部署应用程序8. 扩展和管理集群9.…

算法专栏——双指针

1.移动零 题目链接&#xff1a;移动 0_牛客题霸_牛客网 (nowcoder.com) 算法原理&#xff1a; 像这样子的将一整块数组划分很多部分可以称为数组划分&#xff0c;常用的解法可以是双指针。 说是双指针&#xff0c;但操作的对象是数组&#xff0c;因此下标就是指针。 双指针的…

Rust个人学习笔记

感悟&#xff1a;感觉rust好像缝合怪&#xff0c;既有python的影子&#xff0c;又有java和cpp的影子&#xff0c;可能这就是新型编程语言趋势吧。而且他的各种规范很严格很规范&#xff0c;比java还更工程&#xff0c;各种规范不对都有warning。 命名规范&#xff1a;蛇形命名…