Ollama--本地大语言模型LLM运行专家

文章目录

    • 1、问题提出
    • 2、解决方案
    • 3、Ollama介绍
      • 3.1、Ollama的核心功能
      • 3.2、Ollama的独特之处
    • 4、Ollama安装与使用
      • 4.1、Ollama的安装
    • 5、使用Docker
    • 6、模型库和自定义模型
    • 7、应用场景展望
    • 8、结语

1、问题提出

使用chatgpt之类的闭源大语言模型时,我们与ai沟通的数据会被其搜集用以训练改善模型。
我们的数据很容易被泄露;数据隐私和数据安全问题如何得到保障?

2、解决方案

为了解决上述问题,我们可以考虑在本地部署开源模型,避免数据泄露。

3、Ollama介绍

Ollama是一个强大的运行AI模型的工具;
在这里插入图片描述

3.1、Ollama的核心功能

  • 易于安装和使用:Ollama 支持 macOS、Windows 和 Linux,提供了简洁明了的安装和运行指令,让用户无需深入了解复杂的配置即可启动和运行。

  • 丰富的模型库:通过Ollama,用户可以访问和运行包括 Llama 2、Mistral 和 Dolphin Phi 在内的多种大型语言模型。这为开发者和研究者提供了极大的便利。

  • 高度可定制:Ollama 允许用户通过 Modelfile 定义和创建自定义模型,满足特定应用场景的需求。

  • 优化的性能:即使在普通的个人电脑上,Ollama 也能通过优化运行效率,支持运行较小的模型,为用户提供实验和测试的环境。

3.2、Ollama的独特之处

与市面上其他相似工具相比,Ollama 最大的特色在于它的易用性和灵活性。用户不仅可以通过命令行界面快速运行模型,还可以选择图形用户界面(GUI)进行交互,如 Ollama WebUI 和 macOS 的原生应用 Ollamac 等,极大地提高了用户体验。

4、Ollama安装与使用

4.1、Ollama的安装

使用Ollama,您可以在本地环境中轻松运行和管理大型语言模型,如Llama 2等。以下是Ollama的安装和运行指南,适用于macOS、Windows和Linux平台。

  • macOS 和 Windows 用户
    下载Ollama:

    对于macOS用户,访问Ollama的官方网站或GitHub页面下载最新版本。

    Windows用户可以下载预览版,或通过相同的渠道获取最新版本。

    安装:

    macOS用户直接从下载的包安装。

    Windows用户根据下载的安装程序指引完成安装。

    运行模型:

    安装完成后,打开终端(macOS)或命令提示符(Windows),输入

    命令来运行一个模型,例如Llama 2:

ollama run llama2
  • Linux 用户
    通过命令行安装:

    打开终端,输入以下命令:

curl -fsSL https://ollama.com/install.sh | sh
这个命令会自动下载和安装Ollama。运行模型:安装完成后,在终端中输入
	ollama run llama2
           来运行Llama 2模型

5、使用Docker

对于熟悉Docker的用户,Ollama也提供了官方的Docker镜像。这可以让您在隔离的环境中运行模型,不受本地环境设置的限制。

拉取Ollama Docker镜像:

docker pull ollama/ollama

运行模型:

使用以下命令启动容器并运行模型,例如Llama 2:

docker run -it ollama/ollama run llama2

6、模型库和自定义模型

Ollama支持多种开源模型,您可以通过访问ollama.ai/library来查看所有可用的模型,并使用ollama pull <模型名>来下载指定模型。此外,如果您想创建自定义模型,可以通过创建Modelfile并使用ollama create <模型名> -f ./Modelfile来创建,并通过ollama run <模型名>来运行您的模型。

请添加图片描述

7、应用场景展望

Ollama 的应用场景非常广泛,不仅限于技术研究和开发测试。教育工作者可以利用它为学生提供实践AI技术的平台,技术爱好者也可以通过它探索人工智能的无限可能。

尝试下多模态开源模型llava,识别图片内容。使用相当流畅
请添加图片描述
出数学题和英语题(仅作为演示,通过优化提示词配合rag技术可以呈现更好的效果)

请添加图片描述
不喜欢这种通过命令行交互的形式的话,我们也可以配合open-webui这个开源项目来部署用户界面

请添加图片描述
项目网址:https://github.com/open-webui/open-webui

8、结语

Ollama 以其易用性、灵活性和强大的功能,为本地运行大型语言模型提供了一个理想的解决方案。

在这里插入图片描述


真正的大师,永远都怀着一颗学徒的心!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/722954.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

I.MX6ULL_Linux_驱动篇(54)linux 块设备驱动

前面我们都是在学习字符设备驱动&#xff0c;本章我们来学习一下块设备驱动框架&#xff0c;块设备驱动是Linux 三大驱动类型之一。块设备驱动要远比字符设备驱动复杂得多&#xff0c;不同类型的存储设备又对应不同的驱动子系统&#xff0c;本章我们重点学习一下块设备相关驱动…

【控制台警告】npm WARN EBADENGINE Unsupported engine

今天用webpack下载几个loader依赖&#xff0c;爆出了三个警告&#xff0c;大概的意思就是本地安装的node和npm的版本不是很匹配&#xff1f; 我的解决思路是&#xff1a; 先检查node和npm版本 然后去官网查找版本的对应 靠&#xff0c;官网404 Node.js (nodejs.org) 就找到…

操作系统:初识操作系统

目录 1.冯诺依曼体系结构 2.操作系统 2.1什么是操作系统 2.2为什么需要操作系统 2.3怎么实现操作系统 1.冯诺依曼体系结构 对于上图&#xff1a; 输入设备完成的是写入工作&#xff0c;输出设备完成输出工作&#xff0c;这两部分包含磁盘这类的外存。 存储器一般指的是内存…

Win UI3开发笔记(四)设置主题续2

本机深色主题下设置的背景颜色可以作用于整个对话框&#xff0c;本机浅色模式下设置的背景颜色只作用与下边的部分。 如果本机选深色&#xff0c;程序选浅色&#xff0c;设置为light只对上部分管用&#xff0c;下部分不管用。如图&#xff0c;左边那个hello按钮要看不见了。。…

183基于matlab的非线性调频模态分解(VNCMD)

基于matlab的非线性调频模态分解(VNCMD)&#xff0c;一种基于变分方法的信号分解技术&#xff0c;它将信号分解为多个模式。能够处理非线性调频信号&#xff0c;且对噪声具有较好的鲁棒性。VNCMD的基本原理是通过最小化信号与模式之间的差异来实现信号的分解。程序已调通&#…

Latte:一个类似Sora的开源视频生成项目

前段时间OpenAI发布的Sora引起了巨大的轰动&#xff0c;最长可达1分钟的高清连贯视频生成能力秒杀了一众视频生成玩家。因为Sora没有公开发布&#xff0c;网上对Sora的解读翻来覆去就那么多&#xff0c;我也不想像复读机一样再重复一遍了。 本文给大家介绍一个类似Sora的视频生…

最简单的基于 FFmpeg 的 AVDevice 例子(屏幕录制)

最简单的基于 FFmpeg 的 AVDevice 例子&#xff08;屏幕录制&#xff09; 最简单的基于 FFmpeg 的 AVDevice 例子&#xff08;屏幕录制&#xff09;简介libavdevice 使用抓屏方法gdigrabdshow 源程序结果工程文件下载参考链接 最简单的基于 FFmpeg 的 AVDevice 例子&#xff08…

ASUS华硕天选2锐龙版笔记本电脑FA506ICB/FA706IC原装出厂Windows11系统,预装OEM系统恢复安装开箱状态

链接&#xff1a;https://pan.baidu.com/s/122iHHEOtNUu4azhVPnxNuA?pwdsqk7 提取码&#xff1a;sqk7 适用型号&#xff1a; FA506IM、FA506IE、FA506IC、FA506IHR FA506IR、FA506IHRB、FA506ICB、FA506IEB FA706IM、FA706IE、FA706IC、FA706IHR FA706IR、FA706IHRB、F…

CSS的浮动属性,微信web开发

面试前的准备 在这部分&#xff0c;我将详细讲解面试前我们需要做哪些方面的工作&#xff0c;以保证我们在面试过程中更加顺利。 准备一份漂亮的简历 一份漂亮的简历就是你进入大厂的敲门砖。 网上有很多教程教大家如何写出一份漂亮的简历&#xff0c;这里我就不做重复劳动了…

开源模型应用落地-工具使用篇-Ollama(六)

一、前言 在AI大模型百花齐放的时代&#xff0c;很多人都对新兴技术充满了热情&#xff0c;都想尝试一下。但是&#xff0c;实际上要入门AI技术的门槛非常高。除了需要高端设备&#xff0c;还需要面临复杂的部署和安装过程&#xff0c;这让很多人望而却步。不过&#xff0c;随着…

LiveNVR监控流媒体Onvif/RTSP功能-视频广场点击在线或离线时展示状态记录快速查看通道离线原因

LiveNVR视频广场点击在线或离线时展示状态记录快速查看通道离线原因 1、状态记录1.1、点击在线查看1.2、点击离线查看 2、RTSP/HLS/FLV/RTMP拉流Onvif流媒体服务 1、状态记录 1.1、点击在线查看 可以点击视频广场页面中&#xff0c; 在线 两个字查看状态记录 1.2、点击离线查…

Thinkphp5.1中,将数组赋值给js使用

一、例如Thinkphp5.1中的的代码是这样的 $data [status > 1,msg > 加载成功,data > [id > 1,username > 小洪帽,] ];$this->assign(data,$data);二、JS代码接收PHP中的数组 注意 <> 符号是不需要放引号的。 let arr <?json_encode($data)?>…

【Godot4自学手册】第二十节增加游戏的打击感,镜头震颤、冻结帧和死亡特效

这节我主要学习增加游戏的打击感。我们通过镜头震颤、冻结帧、增加攻击点特效&#xff0c;增加死亡。开始了。 一、添加攻击点特效 增加攻击点特效就是&#xff0c;在攻击敌人时&#xff0c;会在敌人受击点显示一个受击动画。 1.添加动画。 第一步先做个受击点动画。切换到…

交叉编译qt5.14.2

qt源码下载地址&#xff1a;qt-everywhere-src-5.14.2.tar.xz 1.修改qt-everywhere-src-5.14.2/qtbase/mkspecs/linux-arm-gnueabi-g/qmake.conf文件&#xff1a; # # qmake configuration for building with arm-linux-gnueabi-g #MAKEFILE_GENERATOR UNIX CONFIG …

第三篇【传奇开心果系列】Python的自动化办公库技术点案例示例:深度解读Pandas股票市场数据分析

传奇开心果博文系列 系列博文目录Python的自动化办公库技术点案例示例系列 博文目录前言一、Pandas进行股票市场数据分析常见步骤和示例代码1. 加载数据2. 数据清洗和准备3. 分析股票价格和交易量4. 财务数据分析 二、扩展思路介绍1. 技术指标分析2. 波动性分析3. 相关性分析4.…

STM32CubeIDE基础学习-基础外设初始化配置

STM32CubeIDE基础学习-基础外设初始化配置步骤 前言 前面的文章介绍了基础工程的创建步骤&#xff0c;这篇文章就接着在基础工程的基础上来配置相关外设了&#xff0c;下面以STM32F103C8T6的主芯片为例进行简单配置。 基础工程创建步骤回顾 具体的配置步骤流程如下&#xff1…

【Linux】访问文件的本质|文件描述符|文件重定向

文章目录 文件的结构文件描述符标准输入输出文件描述符的规则 文件重定向输出重定向(对应符号>)echo的输出重定向 输入重定向&#xff08;对应符号<&#xff09;追加重定向&#xff08;对应符号‘>>’&#xff09;实现文件重定向的函数dup2()参数测试 前言&#xf…

could not publish server configuration for tomcat at localhost

1&#xff0c;报错信息如图&#xff1a; 2&#xff0c;找到servers双击&#xff0c;选择Modules&#xff0c;如果有两个webModules ,remove一个&#xff0c; 3&#xff0c;如果重启还是报错&#xff0c;干脆两个都remove&#xff0c;双击tomcat服务add And Remove重新添加

【Python】深度学习基础知识——梯度下降详解和示例

尽管梯度下降&#xff08;gradient descent&#xff09;很少直接用于深度学习&#xff0c;但它是随机梯度下降算法的基础&#xff0c;也是很多问题的来源&#xff0c;如由于学习率过大&#xff0c;优化问题可能会发散&#xff0c;这种现象早已在梯度下降中出现。本文通过原理和…

Docker知识点总结

二、Docker基本命令&#xff1a; Docker支持CentOs 6 及以后的版本; CentOs7系统可以直接通过yum进行安装&#xff0c;安装前可以 1、查看一下系统是否已经安装了Docker: yum list installed | grep docker 2、安装docker&#xff1a; yum install docker -y -y 表示自动确认…