【C++进阶(五)】STL大法--list模拟实现以及list和vector的对比

💓博主CSDN主页:杭电码农-NEO💓

⏩专栏分类:C++从入门到精通⏪

🚚代码仓库:NEO的学习日记🚚

🌹关注我🫵带你学习C++
  🔝🔝


在这里插入图片描述


list模拟实现

  • 1. 前言
  • 2. list类的大致框架与结构
  • 3. List类的构造,析构,拷贝构造
  • 4. list的迭代器的实现
    • 4.1 list迭代器的若干函数解析
    • 4.2 list迭代器的解引用和箭头操作
    • 4.3 迭代器类映射到list类
  • 5. const迭代器实现深度剖析
    • 5.1 const迭代器实现详解
    • 5.2 const迭代器和list类的复用
    • 5.3 const迭代器使用实例
  • 6. list和vector的对比
  • 7. 总结以及代码分享

1. 前言

本篇文章立足于上一篇文章:
list深度剖析(上)
请先阅读完上一篇文章后再阅读这篇文章!

本章重点:

本章着重讲解list的模拟实现
list模拟实现的重难点是迭代器的实现
和const迭代器的实现
最后总结list和vector的区间对比

注:我将在文章末尾分享list模式实现全部代码


2. list类的大致框架与结构

由于list类是一个带头双向循环链表
所以在写list类之前,应该先定义节点类
在真正的list类中会复用此类:

template<class T>
class list_node
{
public:T _data;list_node<T>* _next;list_node<T>* _prev;list_node(const T& x = T()):_data(x), _next(nullptr), _prev(nullptr){}
};

这个类和用C语言实现链表的定义很像
节点中存储一个T模板类型的值和
上一个节点的地址和下一个节点的地址

在List类中,由于链表都是些链接关系
所以List类中的成员变量只需要定义一个
那就是头节点head,知道head的链接关系
就知道list类对象中存放的内容!

List类基本框架以及无参构造:

template<class T>
class List
{typedef list_node<T> node;
public:List(){_head = new node;_head->_next=_head;_head->_prev=_head;}
private:node* _head;
}

给头节点head开辟一份空间后
头节点的指向最开始都是指向自身:

在这里插入图片描述


3. List类的构造,析构,拷贝构造

无参构造函数以及写过了,我们模仿
STL库中的带参构造写一个用迭代器
区间初始化的构造函数:

void emptyinit()//创建并初始化哨兵位的头节点,方便给构造和拷贝构造复用{_head = new node;_head->_next = _head;_head->_prev = _head;}
template<class InputTterator>//有参的构造
List(InputTterator first, InputTterator last)
{emptyinit();while (first != last){push_back(*first);first++;}
}

注:push_back先用着,后面会实现

在实现析构函数前,我们可以先实现clear函数
因为析构函数实际上可以复用clear函数:

void clear()//清空数据,除了头节点
{iterator it = begin();while (it != end()){it = erase(it);//erase会返回下一个节点的迭代器}
}~List()//_head也要被删除掉
{clear();delete _head;_head = nullptr;
}

注:迭代器相关的函数先用着,后面会实现

拷贝构造函数的实现:(用lt1拷贝lt2)

//lt2(lt1)
List(const List<T>& lt)//完成深拷贝
{emptyinit();List<T> tmp(lt.begin(), lt.end());//用lt1的迭代器区间去构造一下tmp::swap(_head, tmp._head);
}

此拷贝构造函数精妙的地方有两个:

  1. 它先定义一个临时变量tmp来接受
    lt1的所有值,然后再将临时变量tmp
    的head和lt2的head交换,这样一来
    lt2中的链接关系就和lt1相同了
    并且tmp变量是构造函数初始化的
    它是深拷贝,所以lt2对于lt1也是深拷贝
  1. tmp是临时变量,除了作用域会销毁
    也就是除了此拷贝构造函数后会销毁
    销毁时会调用析构函数,然而lt2的head
    以及和tmp的head交换了,所以tmp销毁
    时实际上是在帮原先的lt2销毁内存!

4. list的迭代器的实现

由于list的迭代器底层不是简单的指针
所以我们不能像实现vector一样直接在
list类定义迭代器和使用迭代器相关函数

要重新写一个迭代器类来实现功能:

template<class T>
struct __list_iterator
{typedef list_node<T> node;typedef __list_iterator iterator;node* _node;
}

这样重新写一个类的作用是将迭代器的
++,- -等操作在此类中实现,因为list中的
++实际上是node=node->next,然而list
中的==符号判断的是node1->data和
node2->data相不相同,如果迭代器和
list写在一个类中,实现此等操作会很麻烦


4.1 list迭代器的若干函数解析

1. 构造函数:

__list_iterator(node* nnode):_node(nnode){}

由于初始化列表会调用node的构造函数
所以list迭代器的构造函数可写可不写

2. 前置++/- -和后置++/- -

iterator& operator++()//前置++
{_node = _node->_next;return *this;
}
iterator& operator++(int)//后置++
{iterator tmp = *this;_node = _node->_next;return tmp;
}
iterator& operator--()//前置--
{_node = _node->_prev;return *this;
}
iterator& operator--(int)//后置--
{iterator tmp = *this;_node = _node->_prev;return tmp;
}

3. 等于和不等于函数解析:

bool operator!=(const iterator& it)const
{return _node != it._node;
}
bool operator==(const iterator& it)const
{return _node == it._node;
}

4.2 list迭代器的解引用和箭头操作

迭代器的使用就像指针一样,所以
解引用后应该直接得到节点的数据!

由于结构体变量除了可以用解引用
以外还能使用->,所以需要写两个函数:

//可读可写
T& operator*()
{return _node->_data;
}
//可读可写
T* operator->()
{return &(operator*());
}

解引用操作的应该没有问题
重点难点在这个箭头->函数
可以将这个函数一步一步拆分:

return &(_node->_data);

相当于返回了一个结构体指针

然而我们想要的并不是一个结构体指针
而是确切的值,蛋这样写编译器并不会报错

这是因为编译器为了代码的可读性
帮我们省略了一个箭头->
所以只需要一个箭头->就能访问数据!

注:省略的箭头可以将返回的结构体指针解引用
然而此结构体指针解引用后其实就是data


4.3 迭代器类映射到list类

当我们实现完迭代器类后
就可以在list类中复用迭代器类了:

template<class T>
class List
{typedef list_node<T> node;typedef __list_iterator<T> iterator;
private:node* _head;

有了迭代器类的加持后,list类中的
其他函数如begin和end就是歪瓜裂枣了

iterator begin()
{//iterator tmp(_head->_next);//return tmp;return iterator(_head->_next);//使用了匿名对象
}
iterator end()
{//iterator tmp(_head);//return tmp;return iterator(_head);
}

注:其他关于迭代器的函数会在最后放出

5. const迭代器实现深度剖析

既然list中的迭代器和vector中的不同
那么const迭代器的实现当然也不同

首先我们要明白一点,list的普通迭代器
和const迭代器的区别到底是什么?

const对象的剖析:

const迭代器是为const对象准备的
然而const对象的特征就是不能修改
那么什么操作会让对象的值变化呢?
答案很明显是解引用操作和箭头->
begin和end函数返回后也有可能被修改
注:返回值是T&和T*的函数都要注意

解决方案剖析:

大家可能第一时间想到再重新写一个
const迭代器的类,里面的实现和普通
迭代器都一样,唯一不同的是解引用函数
和箭头->函数的返回值是const对象

在这里插入图片描述


5.1 const迭代器实现详解

首先,不用再重新写一个类来实现
接下来的方案不要问为什么
不要问怎么想到的,是天才想到的:

在普通迭代器类中使用三个模板参数

为什么要这样做?

通过观察可以发现,只有两个函数不同
并且这两个函数的类型只有T&和T*
那么就专门为这两个类型设置两个模板
只有在编写这两个函数时用到这两个模板
其余函数还是正常的使用T来当类型

话不多说,上代码

template<class T, class Ref, class Ptr>
struct __list_iterator//迭代器不需要析函数
{typedef list_node<T> node;typedef __list_iterator iterator;node* _node;
}

模板中的Ref代表的是引用&
模板中的Ptr代表的是指针
*

现在重新来实现一下这两个函数:

//按模板参数来
Ref operator*()
{return _node->_data;
}
Ptr operator->()
{return &(operator*());
}

现在你脑子肯定是一篇空白
但是精髓的地方马上就来了,请耐住性子


5.2 const迭代器和list类的复用

当list类复用了此迭代器类后:

template<class T>
class List
{typedef list_node<T> node;typedef __list_iterator<T, T&, T*> iterator;typedef __list_iterator<T, const T&, const T*> const_iterator;
private:node* _head;
}

这样写出来后,普通迭代器和const迭代器
就被完美的区别开了,当传入const对象时
系统会把模板参数实例化为const T&
当传入的是普通对象时,系统会把模板参数
实例化为普通的T,T&和T*

begin和end函数的复写:

const_iterator begin()const
{return const_iterator(_head->_next);
}
iterator begin()
{return iterator(_head->_next);//使用了匿名对象
}
const_iterator end()const
{return const_iterator(_head);
}
iterator end()
{return iterator(_head);
}

5.3 const迭代器使用实例

现在,我们通过一个实例来感受这一过程:

void print_list(const list<int>& lt)
{auto it = lt.begin();while (it != lt.end()){//*it = 10;cout << *it << " ";++it;}cout << endl;
}

此时的lt变量是const变量,实例化类时
会实例化为<T,const T&,const T*>
然后回退到迭代器类时,迭代器类的
模板参数Ref就对应:const T&
模板参数Ptr就对应:const T*

此时解引用函数的返回值就是const T&
如果你写:*it=10;那么就会报错!


6. list和vector的对比

详情请看下表:

目录vectorlist
底层结构顺序表,空间连续带头双向循环链表
随机访问支持随机访问,访问效率为O(1)不支持随机访问,访问效率为O(N)
插入和删除任一位置插入删除效率低,还需扩容任一位置插入效率高
空间利用率空间,缓存利用率高不连续空间,容易造成内存碎片
迭代器原生态的指针对原生指针的封装
迭代器失效插入和删除都会导致只有删除会导致
使用场景高效存储,支持随机访问有大量插入和删除操作,不关心随机访问

注:这个表格不能死记硬背,要理解记忆


7. 总结以及代码分享

总的来说,list的底层实现较于vector
来说要复杂一点,这其中的底层原因
就是list的迭代器还需要一层封装,而
vector的迭代器不需要额外封装

C++的强大就在于把复杂的底层
全部封装起来了,而表面的使用上
list和vector并无太大区别,这就是
C++封装的魅力!

list模拟实现全部代码分享:

List模拟实现全部代码

注:全部代码中包含反向迭代器
目前阶段可以跳过不管


🔎 下期预告:栈和队列 🔍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/72229.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux下的系统编程——共享存储映射(十)

前言&#xff1a; mmap是一种内存映射文件的方法&#xff0c;即将一个文件或者其它对象映射到进程的地址空间&#xff0c;实现文件磁盘地址和进程虚拟地址空间中一段虚拟地址的一一对映关系。实现这样的映射关系后&#xff0c;进程就可以采用指针的方式读写操作这一段内存&…

车船边缘网关是如何给车辆船只定位的?

随着智能交通系统的不断发展&#xff0c;车路协同成为了重要的研究方向之一。而AI边缘计算网关在这个领域中发挥着至关重要的作用。本文将重点介绍AI边缘计算网关在车路协同中的应用&#xff0c;并强调其中的重点词汇或短语。 首先&#xff0c;什么是AI边缘计算网关&#xff1…

使用命令行创建仓库

如果你还没有任何代码&#xff0c;可以通过命令行工具创建一个全新的Git仓库并初始化到本项目仓库中。 git clone https://e.coding.net/***/neurosens.git cd neurosens echo "# neurosens" >> README.md git add README.md git commit -m "first commi…

2023年09月编程语言流行度排名

点击查看最新编程语言流行度排名&#xff08;每月更新&#xff09; 2023年09月编程语言流行度排名 编程语言流行度排名是通过分析在谷歌上搜索语言教程的频率而创建的 一门语言教程被搜索的次数越多&#xff0c;大家就会认为该语言越受欢迎。这是一个领先指标。原始数据来自…

解决windows下git操作提示用户名密码错误的问题

当代码从一个平台切换到另一个平台的时候&#xff0c;需要做两步操作&#xff0c;第一步就是更新git的仓库地址&#xff0c;在项目的.git/config文件里面修改&#xff0c;这一步做完之后&#xff0c;就可以推送代码到新的仓库了&#xff0c;这里就是重点来了。 一般第一次推动代…

27.方向标

题目 描述 一位木匠收到了一个木制指示牌的订单。每块木板必须与前一块垂直对齐&#xff0c;要么与前一个箭头的基部对齐&#xff0c;要么与相反的一侧对齐&#xff0c;在那里用特制的螺钉固定。两块木板必须重叠。木匠将设计师发送的草图编码成了一个整数序列&#xff0c;但…

lv3 嵌入式开发-7 linux shell脚本编程(分支语句、循环语句)

目录 1 分支语句 2 多路分支语句 3 for的用法 4 while的用法 5 循环控制语句 6 练习 1 分支语句 语法结构: if 表达式then 命令表fi 如果表达式为真, 则执行命令表中的命令; 否则退出if语句, 即执行fi后面的语句。 if和fi是条件语句的语句括号, 必须成对使用; …

C++,day0907

#include <iostream>using namespace std; struct stu { private:int num; private:double score[32];public:void setNum(){cout <<"请输入学生人数:";cin >>num;}void input(){cout<<"请输入学生的成绩:"<<endl;for(int i…

ARM DIY(九)陀螺仪调试

前言 今天调试六轴陀螺仪 MPU6050 硬件 硬件很简单&#xff0c;使用 I2C 接口&#xff0c;并且没有使用中断引脚。 焊接上 MPU6050 芯片和上拉电阻、滤波电容。 检测 MPU6050 是挂在 I2C-0 上的&#xff0c;I2C-0 控制器的驱动已 OK&#xff0c;所以直接使用 I2C-0 检测 …

Linux与shell命令行学习

文章目录 走进shell基本的bash shell命令2.1 遍历目录 cd2.2 查看文件和目录列表 ls2.3 创建文件 touch2.4 复制文件 cp2.5 自动补全 tab2.6 链接文件 ln2.7 文件重命名 mv2.8 删除文件 rm2.9 创建目录 mkdir2.10 删除目录 rmdir2.11 查看文件类型 file2.12 查看整个文件 cat、…

ABAP BAPI_ACC_DOCUMENT_POST 中 EXTENSION1的用法

BAPI_ACC_DOCUMENT_POST 在过账会计凭证时候&#xff0c;经常会发现一些标准字段在参数中并没有 可以通过CMOD/SMOD增强出口--》ACBAPI01--》EXIT_SAPLACC4_001--》ZXACCU15 示例代码&#xff1a; DATA: wa_extension TYPE bapiextc,it_extension TYPE STANDARD TABLE OF ba…

软件工程概述

软件工程概述 软件工程指的是应用计算机科学、数学及管理科学等原理&#xff0c;以工程化的原则和方法来解决软件问题的工程&#xff0c;目的是提高软件生产效率、提高软件质量、降低软件成本。 1. 计算机软件 计算机软件指的是计算机系统中的程序及其文档。程序是计算任务的…

圆圈加数字的css

方式一 .circle { width: 50px; height: 50px; border-radius: 50%; background-color: #f00; color: #fff; text-align: center; line-height: 50px; } .circle::before { content: attr(data-number); display: block; } <div class"circle" data-number"…

C++学习笔记--函数重载(2)

文章目录 1.3、Function Templates Handling1.3.1、Template Argument Deduction1.3.2、Template Argument Substitution 1.4、Overload Resolution1.4.1、Candidate functions1.4.2、Viable functions1.4.3、Tiebreakers 1.5、走一遍完整的流程1.6、Name Mangling1.7、总结 1.…

深度ESP32 PWM教程如何在ESP32 中使用PWM

关于ESP32PWM的简要说明 ESP32 SoC 满载了非常有用的外设&#xff0c;PWM 就是其中之一。是的。ESP32 的芯片中有一个专用的 PWM 硬件模块。脉宽调制或简称PWM是一种成熟且广泛使用的供电技术。 您可以使用 ESP32 的 PWM 来驱动 LED、电机&#xff08;普通直流电机和无刷电机…

qt文件操作

对话框练习 #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//字体按钮 void Widget::on_ztbtn_clicked() {//调用QFontDia…

01_Flutter之下拉刷新和上拉加载

一.创建页面 由于我们需要请求网络&#xff0c;并将返回的数据渲染到页面上&#xff0c;所以需要继承StatefulWidget&#xff0c;本文涉及的接口&#xff0c;取自鸿神的玩android开放API class ProjectListPage extends StatefulWidget {overrideState<StatefulWidget>…

js摄像头动态检测

利用摄像头每一秒截图一次图像。然后计算2次图像之间的相似度。 如果相似度低于98%就会报警。 var video document.getElementsByClassName(inputvideo)[0]; video.innerHTML "<video classinput_video idcamera autoplay width640px height380px></video>…

windows10使用wheel安装tensorflow2.13.0/2.10.0

安装过程 安装虚拟环境安装virtualenv安装满足要求的python版本使用virtualenv创建指定python版本的虚拟环境 安装tensorflow2.13.0安装tensorflow-docs直接下载使用wheel下载 在VSCode编辑器中使用虚拟环境下的包 安装虚拟环境 这里笔者使用的是 virtualenv进行虚拟环境搭建的…