【完整代码】2023数学建模国赛C题代码--蔬菜类商品的自动定价与补货决策

C 题 蔬菜类商品的自动定价与补货决策
在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差,
大部分品种如当日未售出,隔日就无法再售。因此,商超通常会根据各商品的历史销售和需
求情况每天进行补货。
由于商超销售的蔬菜品种众多、产地不尽相同,而蔬菜的进货交易时间通常在凌晨 3:00-
4:00,为此商家须在不确切知道具体单品和进货价格的情况下,做出当日各蔬菜品类的补货
决策。蔬菜的定价一般采用“成本加成定价”方法,商超对运损和品相变差的商品通常进行
打折销售。可靠的市场需求分析,对补货决策和定价决策尤为重要。从需求侧来看,蔬菜类
商品的销售量与时间往往存在一定的关联关系;从供给侧来看,蔬菜的供应品种在 4 月至 10
月较为丰富,商超销售空间的限制使得合理的销售组合变得极为重要。
附件 1 给出了某商超经销的 6 个蔬菜品类的商品信息;附件 2 和附件 3 分别给出了该
商超 2020 年 7 月 1 日至 2023 年 6 月 30 日各商品的销售流水明细与批发价格的相关数据;
附件 4 给出了各商品近期的损耗率数据。请根据附件和实际情况建立数学模型解决以下问
题:

裙号:882663918
完整代码:https://www.jdmm.cc/file/2709542/

问题一代码:

#!/usr/bin/env python
# coding: utf-8# In[34]:import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import os
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
import matplotlib.font_manager as fm# In[35]:# 设置全局字体
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置中文字体为黑体# 加载字体文件
font = fm.FontProperties(fname='C:\Windows\Fonts\simhei.ttf', size=16)# In[ ]:#千千数模 q群:790539996
#代码购买链接:https://www.jdmm.cc/file/2709542/
#倒卖欢迎举报 举报有奖# # 1.1 蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各品类及单品销售量的分布规律及相互关系。# In[36]:# Read the data
'''
# data_1: 6 个蔬菜品类的商品信息
# data_2: 销售流水明细数据
# data_3: 蔬菜类商品的批发价格
# data_4: 蔬菜类商品的近期损耗率
附件 1 中,部分单品名称包含的数字编号表示不同的供应来源。
附件 4 中的损耗率反映了近期商品的损耗情况,通过近期盘点周期的数据计算得到。'''
data_1 = pd.read_excel('../data/附件1.xlsx')
data_2 = pd.read_excel('../data/附件2.xlsx')
data_3 = pd.read_excel('../data/附件3.xlsx')
data_4 = pd.read_excel('../data/附件4.xlsx')# In[37]:data_1.head()# In[38]:data_2.head()# In[39]:data_3.head()
#将data_3中的列重命名为销售日期、单品编码和批发价格
data_3.columns = ['销售日期','单品编码','批发价格(元/千克)']
data_3.head()
#data_3.shape# In[40]:#将data_4中的列重命名为分类编码、分类名称、平均损耗率
data_4.columns = ['分类编码','分类名称','平均损耗率']
data_4.head()
#data_4.shape# In[41]:data_2.shape# # 1.1.1 蔬菜各品类销售量的分布规律# In[42]:# 合并data_1和data_2
merged_data = pd.merge(data_1, data_2, on='单品编码')
# 按照分类名称进行分组,计算每个品类的销售量
sales_by_category = merged_data[merged_data['销售类型'] == '销售'].groupby('分类名称')['销量(千克)'].sum() - merged_data[merged_data['销售类型'] == '退货'].groupby('分类名称')['销量(千克)'].sum()# In[43]:sales_by_category.index[0:6]# In[44]:# plot the sales distribution
plt.figure(figsize=(10, 6)) # set the figure size to 10x6 inches
plt.bar(sales_by_category.index, sales_by_category.values)
plt.xticks(rotation=45, fontproperties = font, size = 16) # set the font for x-axis labels
plt.xlabel('分类名称', fontproperties = font) # set the font for x-axis label
plt.ylabel('销售量(千克)', fontproperties = font) # set the font for y-axis label
plt.title('蔬菜各品类销售量分布', fontproperties = font) # set the font for title
plt.savefig('../results/sales_distribution.png', dpi=300, bbox_inches='tight') # set dpi to 300 for higher resolution and save the entire figure# In[45]:# 以季度为周期,可视化不同蔬菜品类销售量的变化趋势
# 将销售数据按照季度进行重采样
quarterly_sales = merged_data.resample('Q', on='销售日期')['销量(千克)'].sum()
# 将销售数据按照分类名称和季度进行分组,计算每个品类在每个季度的销售量
# sales_by_category = merged_data[merged_data['销售类型'] == '销售'].groupby(['分类名称', pd.Grouper(key='销售日期', freq='Q')])['销量(千克)'].sum() - merged_data[merged_data['销售类型'] == '退货'].groupby(['分类名称', pd.Grouper(key='销售日期', freq='Q')])['销量(千克)'].sum()
sales_by_category = merged_data[merged_data['销售类型'] == '销售'].groupby(['分类名称', pd.Grouper(key='销售日期', freq='Q')])['销量(千克)'].sum()
# 可视化销售量变化趋势
fig, ax = plt.subplots(figsize=(10, 6))
for category in sales_by_category.index.levels[0]:ax.plot(sales_by_category.loc[category].index, sales_by_category.loc[category].values, label=category)
ax.legend()
ax.set_xlabel('季度')
ax.set_ylabel('销售量(千克)')
ax.set_title('蔬菜各品类销售量变化趋势')
plt.savefig('../results/sales_num_trend.png', dpi=300, bbox_inches='tight')

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

问题 1 蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各
品类及单品销售量的分布规律及相互关系。

问题一要求分析蔬菜各品类及单品销售量的分布规律及相互关系。下

  1. 数据预处理 首先,我们需要对附件2中的销售流水明细数据进行预处理,以便于后续的分析和建模。具体地,我们可以按照以下步骤进行:
  • 对销售流水明细数据进行汇总,得到各蔬菜品类和单品的销售总量。
  • 对销售总量进行归一化处理,以便于后续的分析和比较。
  1. 分析销售量的分布规律 接下来,我们需要分析各蔬菜品类和单品的销售量的分布规律。具体地,我们可以按照以下步骤进行:
  • 绘制销售量的直方图和箱线图,观察它们的分布情况和异常值情况。
  • 计算销售量的均值、方差、偏度和峰度等统计量,以便于后续的分析和比较。
  • 进行聚类分析,将蔬菜品类和单品划分为若干个类别,以便于后续的分析和建模。
  1. 分析销售量的相互关系 在分析了销售量的分布规律之后,我们可以进一步分析各蔬菜品类和单品之间的销售量的相互关系。具体地,我们可以按照以下步骤进行:
  • 绘制销售量的散点图,观察它们之间的关系。
  • 计算销售量之间的相关系数,判断它们之间的线性关系的强度和方向。
  • 进行因子分析

问题 2 考虑商超以品类为单位做补货计划,请分析各蔬菜品类的销售总量与成本加成
定价的关系,并给出各蔬菜品类未来一周(2023 年 7 月 1-7 日)的日补货总量和定价策略,
使得商超收益最大。

问题 2要求分析各蔬菜品类的销售总量与成本加成定价的关系,并给出各蔬菜品类未来一周(2023年7月1-7日)的日补货总量和定价策略,使得商超收益最大。

  1. 数据预处理 首先,我们需要对附件2和附件3中的数据进行预处理,以便于后续的分析和建模。具体地,我们可以按照以下步骤进行:
  • 对销售流水明细数据进行汇总,得到各蔬菜品类的销售总量。
  • 对批发价格数据进行处理,计算各蔬菜品类的成本加成定价。
  1. 分析销售总量与成本加成定价的关系 接下来,我们需要分析各蔬菜品类的销售总量与成本加成定价的关系。具体地,我们可以按照以下步骤进行:
  • 绘制销售总量与成本加成定价的散点图,观察它们之间的关系。
  • 计算销售总量与成本加成定价之间的相关系数,判断它们之间的线性关系的强度和方向。
  • 进行回归分析,得到销售总量与成本加成定价之间的线性回归方程,以便于后续的建模和优化。
  1. 建立数学模型 在分析了销售总量与成本加成定价的关系之后,我们可以建立数学模型,以最大化商超的收益。具体地,我们可以按照以下步骤进行: - 定义决策变量:对于每个蔬菜品类,我们定义一个补货量和一个定价变量,分别表示商超在未来一周内每天补货的数量和每个蔬菜品类的定价。
  • 定义目标函数:商超的收益可以定义为销售收入减去成本。因此,我们可以将目标函数定义为: max Σ(销售收入 - 成本) 其中,Σ表示对所有蔬菜品类求和,销售收入可以通过补货量和定价计算得到,成本可以通过批发价格和补货量计算得到。
  • 定义约束条件:为了保证补货量和定价的合理性,我们需要定义一些约束条件。具体地,我们可以按照以下方式定义约束条件:
  • 补货量约束:商超每天补货的数量不能超过该蔬菜品类的销售总量。
  • 定价约束:商超的定价必须在一定的范围内,以保证价格的合理性和市场竞争力。
  • 收益约束:商超的收益必须大于等于一个给定的阈值,以保证商超的盈利能力。
  1. 求解数学模型 在建立了数学模型之后,我们可以使用数学优化方法,如线性规划或整数规划,来求解模型,得到最优的补货计划和定价策略。具体地,我们可以使用求解器或其他数学优化软件,将模型输入其中,然后运行求解器,得到最优的补货量和定价。最后,我们可以根据模型的结果,给出各蔬菜品类未来一周的日补货总量和定价策略,以实现商超收益最大化。 总之,通过以上的步骤,我们可以分析各蔬菜品类的销售总量与成本加成定价的关系,建立数学模型,求解模型,得到最优的补货计划和定价策略,以实现商超收益最大化。需要注意的是,在实际应用中,我们还需要考虑一些其他的因素,如市场需求、供应链管理、损耗率等,以保证模型的准确性和可行性。

问题 3 因蔬菜类商品的销售空间有限,商超希望进一步制定单品的补货计划,要求可
售单品总数控制在 27-33 个,且各单品订购量满足最小陈列量 2.5 千克的要求。根据 2023
年 6 月 24-30 日的可售品种,给出 7 月 1 日的单品补货量和定价策略,在尽量满足市场对各
品类蔬菜商品需求的前提下,使得商超收益最大。

问题三要求制定单品的补货计划,要求可售单品总数控制在27-33个,且各单品订购量满足最小陈列量2.5千克的要求。根据2023年6月24-30日的可售品种,给出7月1日的单品补货量和定价策略,在尽量满足市场对各品类蔬菜商品需求的前提下,使得商超收益最大。

  1. 数据预处理 首先,我们需要对附件2中的销售流水明细数据进行预处理,以便于后续的分析和建模。具体地,我们可以按照以下步骤进行:
  • 对销售流水明细数据进行汇总,得到各蔬菜品类和单品的销售总量。
  • 对销售总量进行归一化处理,以便于后续的分析和比较。
  1. 制定补货计划和定价策略 接下来,我们需要制定单品的补货计划和定价策略。具体地,我们可以按照以下步骤进行:
  • 根据可售品种和市场需求,确定需要补货的单品种类和数量。
  • 根据各单品的销售量和成本加成定价的关系,计算出各单品的售价。
  • 根据各单品的售价和损耗率,计算出各单品的净收益。
  • 根据各单品的净收益和补货量,计算出商超的总收益。
  • 利用数学优化方法,求解最优的补货计划和定价策略,使得商超收益最大化。
  1. 控制单品的数量和订购量 根据问题三的要求,商超希望制定单品的补货计划,要求可售单品总数控制在27-33个,且各单品订购量满足最小陈列量2.5千克的要求。因此,在制定补货计划和定价策略时,需要考虑这些限制条件,以确保计的可行性和有效性。具体地,我们可以按照以下步骤进行:
  • 根据可售品种和市场需求,确定需要补货的单品种类和数量。
  • 对于每个单品,计算出其最小陈列量,以确保其能够满足市场需求。
  • 根据可售单品总数的限制,对各单品的补货量进行调整,以确保总数控制在27-33个之间。
  • 根据各单品的补货量和最小陈列量,计算出各单品的订购量,以确保其能够满足市场需求和陈列要求。 需要注意的是,这些限制条件可能会相互制约,因此需要进行综合考虑和优化,以达到最优的补货计划和定价策略。

问题 4 为了更好地制定蔬菜商品的补货和定价决策,商超还需要采集哪些相关数据,
这些数据对解决上述问题有何帮助,请给出你们的意见和理由。
对于问题四,商超需要采集哪些相关数据,这些数据对解决上述问题有何帮助,请给出你们的意见和理由。 为了更好地制定蔬菜商品的补货和定价决策,商超需要采集以下相关数据:

  1. 市场需求数据:商超需要了解市场对各品类蔬菜商品的需求情况,以便于制定最优的补货计划和定价策略。这些数据可以通过市场调研、销售数据分析等方式获得。
  2. 成本数据:商超需要了解各单品的成本情况,以便于计算出各单品的售价和净收益。这些数据可以通过采购记录、供应商报价等方式获得。
  3. 损耗率数据:商超需要了解各单品的损耗率情况,以便于计算出各单品的净收益。这些数据可以通过库存管理系统、盘点记录等方式获得。
  4. 供应商数据:商超需要了解各单品的供应商情况,以便于进行供应商评估和管理。这些数据可以通过采购记录、供应商合同等方式获得。
    这些数据对解决上述问题非常有帮助。例如,市场需求数据可以帮助商超了解市场对各品类蔬菜商品的需求情况,从而制定最优的补货计划和定价策略;成本数据和损耗率数据可以帮助商超计算出各单品的售价和净收益,从而实现商超收益最大化;供应商数据可以帮助商超进行供应商评估和管理,从而确保商品的质量和供应.
    附件1给出了6个蔬菜品类的商品信息,包括品类、单品名称、供应商、规格、单位和成本加成等信息。附件2和附件3分别给出了该商2020年7月1日至2023年6月30日各商品的销售流水明细与批发价格的相关数据。附件4给出了各商品近期的损耗率数据。这些数据对制定蔬菜类商品的补货和定价决策非常有帮助,可以帮助商超了解市场需求、商品成本、损耗情况等,从而制定最优的补货计划和定价策略,实现商超收益最大化。

附件 1 6 个蔬菜品类的商品信息
附件 2 销售流水明细数据
附件 3 蔬菜类商品的批发价格
附件 4 蔬菜类商品的近期损耗率

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/72187.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c高级 day1

使用cut截取出Ubuntu用户的家目录,要求:不能使用":"作为分割 xmind:

从智能手机到智能机器人:小米品牌的高端化之路

原创 | 文 BFT机器人 前言 在前阵子落幕的2023世界机器人大会“合作之夜”上,北京经济技术开发区管委会完成了与世界机器人合作组织、小米机器人等16个重点项目签约,推动机器人创新链和产业链融合,其中小米的投资额达到20亿! 据了…

分布式调度Elastic-job

分布式调度Elastic-job 1. 概述 1.1什么是任务调度 我们可以思考⼀下下⾯业务场景的解决⽅案: 某电商平台需要每天上午10点,下午3点,晚上8点发放⼀批优惠券某银⾏系统需要在信⽤卡到期还款⽇的前三天进⾏短信提醒某财务系统需要在每天凌晨0:10分结算前…

PostMan传时间参数一次性发送多次请求

文章目录 1. Date类型的参数, "date": "2023-09-07 22:01:51"格式会报错2. 在Pre-request Script预置时间3. 使用postman一次性发送多次请求 1. Date类型的参数, “date”: "2023-09-07 22:01:51"格式会报错 2. 在Pre-req…

算法 数据结构 斐波那契数列 递归实现斐波那契数列 斐波那契递归的优化 斐波那契数列递归求解 多路递归实现 斐波那契算法系列 数据结构(十一)

1. 什么是斐波那契数列: 之前的例子是每个递归函数只包含一个自身的调用,这称之为 single recursion 如果每个递归函数例包含多个自身调用,称之为 multi recursion 递推关系 下面的表格列出了数列的前几项 F0F1F2F3F4F5F6F7F8F9F10F11F12…

前端 JS 经典:上传文件

重点&#xff1a;multipart/form-data 后端识别上传类型必填 1. form 表单上传 <!-- enctype"multipart/form-data" 这个必填 --> <form action"http://127.0.0.1:8080/users/avatar" method"post" enctype"multipart/form-data…

SQL语言的分类:DDL(数据库、表的增、删、改)、DML(数据的增、删、改)

数据库管理系统&#xff08;数据库软件&#xff09;功能非常多&#xff0c;不仅仅是存储数据&#xff0c;还要包含&#xff1a;数据的管理、表的管理、库的管理、账户管理、权限管理等。 操作数据库的SQL语言&#xff0c;基于功能&#xff0c;划分为4类&#xff1a; 1、数据定…

使用半导体材料制作霍尔元件的优点

霍尔元件是一种基于霍尔效应的传感器&#xff0c;可以测量磁场强度和电流等物理量。霍尔效应是指&#xff0c;当电流通过一块导体时&#xff0c;如果该导体置于垂直于电流方向的磁场中&#xff0c;就会在导体两侧出现一定的电势差&#xff0c;这就是霍尔效应。霍尔元件可以利用…

PHP8函数包含文件-PHP8知识详解

在php中&#xff0c;可以使用以下函数来包含其他文件&#xff1a;include()、include_once()、require()、require_once()。 1、include(): 包含并运行指定文件中的代码。如果文件不存在或包含过程中出现错误&#xff0c;将发出警告。 <?php include filename.php; ?>…

与 vmx86 驱动程序的版本不匹配: 预期为 410.0,实际为 401.0

与 vmx86 驱动程序的版本不匹配: 预期为 410.0&#xff0c;实际为 401.0。 驱动程序“vmx86.sys”的版本不正确。请尝试重新安装 VMware Workstation。 我电脑历史上装过几个版本的vmware workstation: 怀疑是不兼容版本生成的vmx.86.sys 在系统中和该软件冲突&#xff0c;又没…

Redis总结(三)

目录 什么是缓存预热、缓存雪崩、缓存击穿、缓存穿透&#xff1f; 缓存预热 缓存雪崩 解决方案 针对Redis故障宕机 针对大量key同时过期 缓存击穿 解决方案 缓存穿透 解决方案 总结 数据库和缓存如何保证一致性&#xff1f; 先更新缓存还是先更新数据库&#xff1…

【sgLazyCascader】自定义组件:基于el-cascader的懒加载级联菜单,支持异步加载子级菜单

sgLazyCascader源码 <template><div :class"$options.name"><el-cascader :props"props" v-model"model" :placeholder"placeholder || 请选择" :options"options"></el-cascader></div> &l…

【Docker】镜像的创建、管理与发布

镜像的获取 镜像可以从以下方式获得&#xff1a; 从远程镜像仓库拉取&#xff0c;可以是公有仓库&#xff0c;也可以是私有仓库从Dockerfile构建从文件导入&#xff08;离线&#xff09;从容器提交 镜像的基本操作 跟镜像相关的命令如下&#xff1a; $ docker image --help…

大数据-玩转数据-Flink状态编程(上)

一、Flink状态编程 有状态的计算是流处理框架要实现的重要功能&#xff0c;因为稍复杂的流处理场景都需要记录状态&#xff0c;然后在新流入数据的基础上不断更新状态。 SparkStreaming在状态管理这块做的不好, 很多时候需要借助于外部存储(例如Redis)来手动管理状态, 增加了编…

macbookpro怎么删除软件没有鼠标

macbookpro怎么删除软件没有鼠标,macbookpro触摸板可以替代鼠标进行操作。左右键功能与鼠标相同&#xff0c;可用于执行删除操作。此外&#xff0c;还可以利用键盘上的Delete键来删除选中的文件。 删除软件方法 方法1、打开应用程序&#xff0c;键盘按住control&#xff0c;加点…

数据结构与算法之贪心动态规划

一&#xff1a;思考 1.某天早上公司领导找你解决一个问题&#xff0c;明天公司有N个同等级的会议需要使用同一个会议室&#xff0c;现在给你这个N个会议的开始和结束 时间&#xff0c;你怎么样安排才能使会议室最大利用&#xff1f;即安排最多场次的会议&#xff1f;电影的话 那…

高等数学教材重难点题型总结(四)不定积分

难点在于量级&#xff0c;不定积分一定要多练多见才能游刃有余~ 1.利用求导公式验证等式 2.计算不定积分

C语言——指针完全版

目录 一、指针的运算 1.1指针 - 整数 1.2指针 - 指针 二、指针遍历数组 2.1指针遍历数组 1.了解数组名称的含义&#xff08;&数组名和数组名的区别&#xff09;。 2.用指针遍历数组 三、指针数组、数组指针、函数指针 3.1指针数组 3.1.1指针数组的形式 3.1.2指针…

【力扣每日一题】2023.9.7 修车的最少时间

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们一个数值&#xff0c;数组里每个元素表示一个老师傅&#xff0c;老师傅修车花费的时间等于数值乘上车辆数的平方。 问我们修理…

编程语言排行榜

以下是2023年的编程语言排行榜&#xff08;按照流行度排序&#xff09;&#xff1a; Python&#xff1a;Python一直以来都是非常受欢迎的编程语言&#xff0c;它简洁、易读且功能强大。在数据科学、机器学习、人工智能等领域有广泛应用。 JavaScript&#xff1a;作为前端开发…