算法训练day43|动态规划 part05:0-1背包 (LeetCode 1049. 最后一块石头的重量 II、494. 目标和、474.一和零)

文章目录

  • 1049. 最后一块石头的重量 II
    • 思路分析
    • 代码实现
  • 494. 目标和
    • 思路分析
    • 动规方法
    • 代码实现
    • 总结思考
  • 474.一和零
    • 思路分析
    • 代码实现
    • 思考总结

var code = "57a5e730-4e5e-43ad-b567-720d69f0371a"

1049. 最后一块石头的重量 II

题目链接🔥🔥
有一堆石头,每块石头的重量都是正整数。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。

示例:
输入:[2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

提示:
1 <= stones.length <= 30
1 <= stones[i] <= 1000

思路分析

本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了。
并且和分割等和子集很像了。

  1. 确定dp数组以及下标的含义

dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]。

可以回忆一下01背包中,dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j]。

相对于 01背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”

  1. 确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

一些同学可能看到这dp[j - stones[i]] + stones[i]中 又有- stones[i] 又有+stones[i],看着有点晕乎。

大家可以再去看 dp[j]的含义。

  1. dp数组如何初始化
    既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和的一半。
    因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中dp[j]才不会初始值所覆盖。

  2. 确定遍历顺序
    如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

  3. 举例推导dp数组
    在这里插入图片描述

最后dp[target]里是容量为target的背包所能背的最大重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的。

那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

代码实现

class Solution {
public:int lastStoneWeightII(vector<int>& stones) {int sum=0;for(int i:stones){sum+=i;}int target=sum/2;vector<int> dp(target+1,0);for(int i=0;i<stones.size();i++){for(int j=target;j>=stones[i];j--){dp[j]=max(dp[j],dp[j-stones[i]]+stones[i]);}}int result=sum-2*dp[target];return result;}
};

494. 目标和

题目链接🔥🔥

给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。

返回可以使最终数组和为目标数 S 的所有添加符号的方法数。

示例:
输入:nums: [1, 1, 1, 1, 1], S: 3
输出:5
解释:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
一共有5种方法让最终目标和为3。

提示:
数组非空,且长度不会超过 20 。
初始的数组的和不会超过 1000 。
保证返回的最终结果能被 32 位整数存下

思路分析

这道题目咋眼一看和动态规划背包啥的也没啥关系。

本题要如何使表达式结果为target,

既然为target,那么就一定有 left组合 - right组合 = target。

left + right = sum,而sum是固定的。right = sum - left

公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。

target是固定的,sum是固定的,left就可以求出来。

此时问题就转化为,装满容量为left的背包,有几种方法。

大家看到(target + sum) / 2 应该担心计算的过程中向下取整有没有影响。

这么担心就对了,例如sum 是5,target是2的话其实就是无解的,所以:

if ((target + sum) % 2 == 1) return 0; // 此时没有方案

同时如果target的绝对值已经大于sum,那么也是没有方案的。

if (abs(target) > sum) return 0; // 此时没有方案

动规方法

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。

本题则是装满有几种方法。其实这就是一个组合问题了。

  1. 确定dp数组以及下标的含义

dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

  1. 确定递推公式

有哪些来源可以推出dp[j]呢?

只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

例如:dp[j],j 为5,

已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包
那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

所以求组合类问题的公式,都是类似这种:

dp[j] += dp[j - nums[i]]

这个公式在后面在讲解背包解决排列组合问题的时候还会用到!

dp数组如何初始化
从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。

这里有录友可能认为从dp数组定义来说 dp[0] 应该是0,也有录友认为dp[0]应该是1。

其实不要硬去解释它的含义,咱就把 dp[0]的情况带入本题看看应该等于多少。

如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。

所以本题我们应该初始化 dp[0] 为 1。

可能有同学想了,那 如果是 数组[0,0,0,0,0] target = 0 呢。

其实 此时最终的dp[0] = 32,也就是这五个零 子集的所有组合情况,但此dp[0]非彼dp[0],dp[0]能算出32,其基础是因为dp[0] = 1 累加起来的。

dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。

  1. 确定遍历顺序

对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。

  1. 举例推导dp数组

输入:nums: [1, 1, 1, 1, 1], S: 3
bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4
dp数组状态变化如下:
在这里插入图片描述

代码实现

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {int sum=0;for(int i:nums) sum+=i;if(abs(target)>sum) return 0;if((target+sum)%2) return 0;int bagsize=(target+sum)/2;vector<int> dp(bagsize+1,0);dp[0]=1;for(int i=0;i<nums.size();i++){for(int j=bagsize;j>=nums[i];j--){dp[j]+=dp[j-nums[i]];}}return dp[bagsize];}
};

总结思考

本题还是有点难度,大家也可以记住,在求装满背包有几种方法(仅仅是求个数,不用把所有组合列出来)的情况下,递推公式一般为:

dp[j] += dp[j - nums[i]];

后面我们在讲解完全背包的时候,还会用到这个递推公式!


474.一和零

题目链接🔥🔥
给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例 :
输入:strs = [“10”, “0001”, “111001”, “1”, “0”], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {“10”,“0001”,“1”,“0”} ,因此答案是 4 。 其他满足题意但较小的子集包括 {“0001”,“1”} 和 {“10”,“1”,“0”} 。{“111001”} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:
输入:strs = [“10”, “0”, “1”], m = 1, n = 1
输出:2
解释:最大的子集是 {“0”, “1”} ,所以答案是 2 。

提示:
1 <= strs.length <= 600
1 <= strs[i].length <= 100
strs[i] 仅由 ‘0’ 和 ‘1’ 组成
1 <= m, n <= 100

思路分析

多重背包是每个物品,数量不同的情况。

本题中strs 数组里的元素就是物品,每个物品都是一个!

而m 和 n相当于是一个背包,两个维度的背包。本题其实还是01背包问题
确定dp数组(dp table)以及下标的含义
dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。

确定递推公式
dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。

然后我们在遍历的过程中,取dp[i][j]的最大值。

所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

dp数组如何初始化
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中已经讲解了,01背包的dp数组初始化为0就可以。

因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。

确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲到了01背包为什么一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!

那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。

有同学可能想,那个遍历背包容量的两层for循环先后循序有没有什么讲究?

没讲究,都是物品重量的一个维度,先遍历哪个都行!

举例推导dp数组

在这里插入图片描述

代码实现

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n) {vector<vector<int>> dp(m+1,vector<int> (n+1,0));for(string str:strs){ // 遍历物品int zeronums=0,onenums=0;for(char c:str){if(c=='0') zeronums++;else onenums++;}for(int i=m;i>=zeronums;i--){  // 遍历背包容量且从后向前遍历!for(int j=n;j>=onenums;j--){dp[i][j]=max(dp[i][j],dp[i-zeronums][j-onenums]+1);}}}return dp[m][n];}
};

思考总结

此时我们讲解了0-1背包的多种应用,

纯0-1背包 是求 给定背包容量 装满背包 的最大价值是多少。
416. 分割等和子集 是求 给定背包容量,能不能装满这个背包。
1049. 最后一块石头的重量 II 是求 给定背包容量,尽可能装,最多能装多少
494. 目标和是求 给定背包容量,装满背包有多少种方法。
本题是求 给定背包容量,装满背包最多有多少个物品。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/72125.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

揭秘拼多多API接口:让商家和用户实现高效连接与便捷操作

随着电商行业的飞速发展&#xff0c;拼多多作为一家新兴电商平台&#xff0c;近年来已逐渐成为市场的焦点。为了满足商家和用户的需求&#xff0c;拼多多不断创新&#xff0c;推出了智能化的API接口&#xff0c;以实现更加高效、便捷的操作和管理。本文将深入探讨拼多多API接口…

提高使用VS Code工作效率的技巧

提高使用VS Code工作效率的技巧 时间轴视图&#xff1a;本地源代码控制 时间轴视图为我们提供了内置的源代码控制。 我们中的许多人都知道 Git 和其他源代码控制工具有多么有用&#xff0c;它们可以帮助我们轻松跟踪文件更改并在需要时恢复到之前的状态。 因此&#xff0c;…

go基础08-map的内部实现

和切片相比&#xff0c;map类型的内部实现要复杂得多。Go运行时使用一张哈希表来实现抽象的map类型。运行时实现了map操作的所有功能&#xff0c;包括查找、插入、删除、遍历等。在编译阶段&#xff0c;Go编译器会将语法层面的map操作重写成运行时对应的函数调用。 下面是大致的…

YOLOV7改进-添加Deformable Conv V2

可变形卷积link class DCNv2(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride1,padding1, groups1, actTrue, dilation1, deformable_groups1):super(DCNv2, self).__init__()self.in_channels in_channelsself.out_channels out_channelsse…

QT for andriod

QT for andriod 开发 apk软件&#xff0c;因为一些特殊的原因&#xff0c;在这里简单的记录一哈自己开发apk的流程和心得。 首先说明我采用的环境有哪些&#xff1f; 1、QT的版本&#xff0c;个人建议5.15.2的版本及以上&#xff0c;我是用的5.15.2。 2、andriod studio 可以…

3D数据导出工具HOOPS Publish:3D数据查看、生成标准PDF或HTML文档!

HOOPS中文网http://techsoft3d.evget.com/ 一、3D导出SDK HOOPS Publish是一款功能强大的SDK&#xff0c;可以创作丰富的工程数据并将模型文件导出为各种行业标准格式&#xff0c;包括PDF、STEP、JT和3MF。HOOPS Publish核心的3D数据模型是经过ISO认证的PRC格式(ISO 14739-1:…

STM32移植FAT文件系统

所谓“移植”&#xff0c;就是打通FAT源码和物理设备之间的软件接口。 FAT源码早就被公益组织给写好了&#xff0c;直接下载源码。但是FAT作为顶层应用程序&#xff0c;它需要面对的底层物理设备是不确定的&#xff0c;那么底层的物理设备驱动程序就需要程序员来自己写。物理设…

Android:基于mvvm框架使用viewPage

一、前言&#xff1a; 最近在学习viewpage的使用&#xff0c;加上一直以来用mvvm框架。就想着记录一下。 二、代码展示&#xff1a; 1.引入依赖 //viewPage2引用(微信左右滑动页面)implementation androidx.viewpager2:viewpager2:1.0.0 2.在xml中的使用 3.在代码中找到vie…

脚本:python实现樱花树

文章目录 代码效果 代码 from turtle import * from random import * from math import * def tree(n, l):pd () # 下笔# 阴影效果t cos ( radians ( heading () 45 ) ) / 8 0.25pencolor ( t, t, t )pensize ( n / 3 )forward ( l ) # 画树枝if n > 0:b random () *…

算法通关村第12关【黄金】| 字符串冲刺题

1.最长公共前缀 思路&#xff1a;纵向比较&#xff0c;每个字符串从头挨个比较 class Solution {public String longestCommonPrefix(String[] strs) {StringBuilder sb new StringBuilder();for(int i 0;i<strs[0].length();i){char c strs[0].charAt(i);for(int j 1;j…

Qt实现图书管理系统(C++)

文章目录 数据库表的实现创建表将powerDesigner里面的表导出成xxx.sql脚本将SQL文件导入数据库创建表 图书管理系统思维导图创建工程开发阶段创建Dlg_login登录页面login页面样式主页页面布局主函数测试login设置logo打包程序子页面的样子将子页面放到StackedWidget里面按钮直接…

Python学习 -- logging模块

logging 模块是 Python 中用于记录日志的标准库&#xff0c;它提供了丰富的功能&#xff0c;可以帮助开发者进行日志记录和管理。以下是关于logging模块的详细使用方式&#xff0c;包括日志级别、处理流程、Logger 类、Handler 类、Filter 类、Formatter 类以及模块中常用函数等…

shell入门运算符操作、条件判断

♥️作者&#xff1a;小刘在C站 ♥️个人主页&#xff1a; 小刘主页 ♥️努力不一定有回报&#xff0c;但一定会有收获加油&#xff01;一起努力&#xff0c;共赴美好人生&#xff01; ♥️学习两年总结出的运维经验&#xff0c;以及思科模拟器全套网络实验教程。专栏&#xf…

PCIe 5.0验证实战,经常遇到的那些问题?

PCIe 5.0是当前最新的PCI Express规范&#xff0c;提供了更高的数据传输速率和更大的带宽。 PCIe是连接两个芯片的接口&#xff0c;负责两个芯片通信, 连接芯片的通路为高速SerDes, 称之为链路。PCIe确保通路正常-链路训练状态机。PCIe在芯片内部是非常重要的一个大的模块&…

YOLOv5改进算法之添加CA注意力机制模块

目录 1.CA注意力机制 2.YOLOv5添加注意力机制 送书活动 1.CA注意力机制 CA&#xff08;Coordinate Attention&#xff09;注意力机制是一种用于加强深度学习模型对输入数据的空间结构理解的注意力机制。CA 注意力机制的核心思想是引入坐标信息&#xff0c;以便模型可以更好地…

大数据课程K20——Spark的SparkSQL概述

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解Spark的SparkSQL由来; ⚪ 了解Spark的SparkSQL特点; ⚪ 了解Spark的SparkSQL优势; ⚪ 掌握Spark的SparkSQL入门; 一、SparkSQL概述 1. 概述 Spark为结构化数据处理引入了一个称…

STM32单片机OLED贪吃蛇游戏记分计时

实践制作DIY- GC00165---OLED贪吃蛇游戏 一、功能说明&#xff1a; 基于STM32单片机设计---OLED贪吃蛇游戏 二、功能说明&#xff1a; STM32F103C系列最小系统板0.96寸OLED显示器上、下、左、右4个按键 1.通过OLED配合按键实现贪吃蛇游戏 2.可以上下左右移动。 3.可以统计显…

golang-bufio 缓冲写

1. 缓冲写 在阅读这篇博客之前&#xff0c;请先阅读上一篇&#xff1a;golang-bufio 缓冲读 // buffered output// Writer implements buffering for an io.Writer object. // If an error occurs writing to a Writer, no more data will be // accepted and all subsequent…

搭建vue3项目并git管理

搭建vue3项目 采用vue3的create-vue脚手架搭建项目&#xff0c;底层是vite&#xff0c;要求环境 node 16.0及以上&#xff08;node -v检查node版本&#xff09; 在文件夹右键->终端-> npm init vuelatest&#xff0c;输入项目名称&#xff0c;根据需要选择是否装包 src…

04 卷积神经网络搭建

一、数据集 MNIST数据集是从NIST的两个手写数字数据集&#xff1a;Special Database 3 和Special Database 1中分别取出部分图像&#xff0c;并经过一些图像处理后得到的[参考]。 MNIST数据集共有70000张图像&#xff0c;其中训练集60000张&#xff0c;测试集10000张。所有图…