神经网络结构——CNN、RNN、LSTM、Transformer !!

文章目录

前言

一、什么是CNN

网络结构

解决问题

工作原理

实际应用

二、什么是RNN

网络结构

解决问题

工作原理

应用场景

三、什么是LSTM

网络结构

解决问题

工作原理

应用场景

四、什么是Transformer

网络结构

解决问题

工作原理

BERT

GPT


前言

本文将从什么是CNN?什么是RNN?什么是LSTM?什么是Transformer?四个问题,简单介绍神经网络结构。

神经网络结构


一、什么是CNN

卷积神经网络(CNN):通过卷积和池化操作有效地处理高维图像数据,降低计算复杂度,并提取关键特征进行识别和分类。

网络结构

  • 卷积层:用来提取图像的局部特征。
  • 池化层:用来大幅降低参数量级,实现数据降维。
  • 全连接层:用来输出想要的结果。

卷积神经网络(CNN)

解决问题

  • 提取特征:卷积操作提取图像特征,如边缘、纹理等,保留图像特征。
  • 数据降维:池化操作大幅降低参数量级,实现数据降维,大大减少运算量,避免过拟合。

工作原理

  • 卷积层:通过卷积核的过滤提取出图片中局部的特征,类似初级视觉皮层进行初步特征提取。

 使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值

  • 池化层:下采样实现数据降维,大大减少运算量,避免过拟合。

原始是20×20的,进行下采样,采样为10×10,从而得到2×2大小的特征图

  • 全连接层:经过卷积层和池化层处理过的数据输入到全连接层,得到最终想要的结果。

全连接层

LeNet-5:被誉为卷积神经网络的“Hello World”,是图灵奖获得者Yann LeCun(杨立昆)在1998年提出的CNN算法,用来解决手写识别的问题。

LeNet-5通过引入卷积层、池化层和全连接层等关键组件,构建了一个高效且强大的图像识别网络,为后续卷积神经网络的发展奠定了基础。

  • 输入层:INPUT
  • 三个卷积层:C1、C3和C5
  • 两个池化层:S2和S4
  • 一个全连接层:F6
  • 输出层:OUTPUT

输入层-卷积层-池化层-卷积层-池化层-卷积层-全连接层-输出层

实际应用

  • 图像分类:可以节省大量的人工成本,将图像进行有效的分类,分类的准确率可以达到95%+。典型场景:图像搜索。
  • 目标定位:可以在图像中定位目标,并确定目标的位置及大小。典型场景:自动驾驶。
  • 目标分割:简单理解就是一个像素级的分类。典型场景:视频裁剪。
  • 人脸识别:非常普及的应用,戴口罩都可以识别。典型场景:身份认证。

二、什么是RNN

循环神经网络(RNN):一种能处理序列数据并存储历史信息的神经网络,通过利用先前的预测作为上下文信号,对即将发生的事件做出更明智的决策。

网络结构

  • 输入层:接收输入数据,并将其传递给隐藏层。输入不仅仅是静态的,还包含着序列中的历史信息。
  • 隐藏层:核心部分,捕捉时序依赖性。隐藏层的输出不仅取决于当前的输入,还取决于前一时刻的隐藏状态。
  • 输出层:根据隐藏层的输出生成最终的预测结果。

循环神经网络(RNN)

解决问题

  • 序列数据处理:RNN能够处理多个输入对应多个输出的情况,尤其适用于序列数据,如时间序列、语音或文本,其中每个输出与当前的及之前的输入都有关
  • 循环连接:RNN中的循环连接使得网络能够捕捉输入之间的关联性,从而利用先前的输入信息来影响后续的输出。

工作原理

  • 输入层:先对句子“what time is it ?”进行分词,然后按照顺序输入。

对句子进行分词

  • 隐藏层:在此过程中,我们注意到前面的所有输入都对后续的输出产生了影响。圆形隐藏层不仅考虑了当前的输入,还综合了之前所有的输入信息,能够利用历史信息来影响未来的输出

前面所有的输入都对后续的输出产生了影响

  • 输出层:生成最终的预测结果:Asking for the time。

输出结果:Asking for the time

应用场景

(1)处理数据

  • 文本数据:处理文本中单词或字符的时序关系,并进行文本的分类或翻译。
  • 语音数据:处理语音信号中的时许信息,并将其转换为相应的文本。
  • 时间序列数据:处理具有时间序列特征的数据,如股票价格、气候变化等。
  • 视频数据:处理视频帧序列,提取视频中的关键特征。

(2)实际应用

  • 文本生成:填充给定文本的空格或预测下一个单词。典型场景:对话生成。
  • 机器翻译:学习语言之间的转换规则,并自动翻译。典型场景:在线翻译。
  • 语音识别:将语音转换成文本。典型场景:语音助手。
  • 视频标记:将视频分解为一系列关键帧,并为每个帧生成内容匹配的文本描述。典型场景:生成视频摘要。

三、什么是LSTM

长短期记忆网络(LSTM):一种特殊的循环神经网络,通过引入内存块和门控机制来解决梯度消失问题,从而更有效地处理和记忆长期依赖信息。(RNN的优化算法)

网络结构

  1. 细胞状态(Cell state):负责保存长期依赖信息。
  2. 门控结构:每个LSTM单眼包含三个门:输入门、遗忘门和输出门。
  •         遗忘门(Forget Gate):决定从细胞状态中丢弃哪些信息。
  •         输入门(Input Gate):决定哪些新信息被加入到细胞状态中。
  •         输出门(Output Gate):基于细胞状态决定输出的信息。

长短期记忆网络(LSTM)

解决问题

  • 短时记忆:RNN难以捕捉和利用序列中的长期依赖关系,从而限制了其在处理复杂任务时的性能。
  • 梯度消失/梯度爆炸:在RNN的反向传播过程中,梯度会随着时间步的推移而逐渐消失(变得非常小)或爆炸(变得非常大)。

工作原理

LSTM的细胞结构和运算

  • 输入门:决定哪些新信息应该被添加到记忆单元中

由一个sigmoid激活函数和一个tanh激活函数组成。sigmoid函数决定哪些信息是重要的,而tanh函数则生成新的候选信息。

输入门(sigmoid激活函数 + tanh激活函数)

  • 遗忘门:决定哪些旧信息应该从记忆单元中遗忘或移除

遗忘门仅由一个sigmoid激活函数组成。

sigmoid激活函数(区间0~1)

遗忘门(sigmoid激活函数)

  • 输出门:决定记忆单元中的哪些信息应该被输出到当前时间步的隐藏状态中。

输出门同样由一个sigmoid激活函数和一个tanh激活函数组成。sigmoid函数决定哪些信息应该被输出,而tanh函数则处理记忆单元的状态以准备输出。

输出门(sigmoid激活函数 + tanh激活函数)

应用场景

(1)机器翻译

应用描述:

  • LSTM在机器翻译中用于将源语言句子自动翻译成目标语言句子。

关键组件:

  • 编码器(Encoder):一个LSTM网络,负责接收源语言句子并将其编码成一个固定长度的上下文向量。
  • 解码器(Decoder):另一个LSTM网络,根据上下文向量生成目标语言的翻译句子。

流程:

  1. 源语言输入:将源语言句子分词并转换为词向量序列。
  2. 编码:使用编码器LSTM处理源语言词向量序列,输出上下文向量。
  3. 初始化解码器:将上下文向量作为解码器LSTM的初始隐藏状态。
  4. 解码:解码器LSTM逐步生成目标语言的词序列,直到生成完整的翻译句子。
  5. 目标语言输出:将解码器生成的词序列转换为目标语言句子。

优化:

  • 通过比较生成的翻译句子与真实目标句子,使用反向传播算法优化LSTM模型的参数,以提高翻译质量。

(2)情感分析

应用描述:

  • LSTM用于对文本进行情感分析,判断其情感倾向(积极、消极或中立)。

关键组件:

  • LSTM网络:接收文本序列并提取情感特征。
  • 分类层:根据LSTM提取的特征进行情感分类。

流程:

  1. 文本预处理:将文本分词、去除停用词等预处理操作。
  2. 文本表示:将预处理后的文本转换为词向量序列。
  3. 特征提取:使用LSTM网络处理词向量序列,提取文本中的情感特征。
  4. 情感分类:将LSTM提取的特征输入到分类层进行分类,得到情感倾向。
  5. 输出:输出文本的情感倾向(积极、消极或中立)。

优化:

  • 通过比较预测的情感倾向与真实标签,使用反向传播算法优化LSTM模型的参数,以提高情感分析的准确性。

四、什么是Transformer

Transformer:一种基于自注意力机制的神经网络结构,通过并行计算和多层特征抽取,有效解决了长序列依赖问题,实现了在自然语言处理等领域的突破。

网络结构

由输入部分输入输出嵌入与位置编码)、多层编码器、多层解码器以及输出部分(输出线性层与Softmax)四大部分组成。

Transformer架构

输入部分:

  • 源文本嵌入层:将源文本中的词汇数字表示转换为向量表示,捕捉词汇间的关系。
  • 位置编码器:为输入序列的每个位置生成位置向量,以便模型能够理解序列中的位置信息。
  • 目标文本嵌入层(在解码器中使用):将目标文本中的词汇数字表示转换为向量表示。

编码器部分:

  • 由N个编码器层堆叠而成。
  • 每个编码器层由两个子层连接结构组成:第一个子层是多头自注意力子层,第二个子层是一个前馈全连接子层。每个子层后都接有一个规范化层和一个残差连接。

解码器部分:

  • 由N个解码器层堆叠而成。
  • 每个解码器层由三个子层连接结构组成:第一个子层是一个带掩码的多头自注意力子层,第二个子层是一个多头自注意力子层(编码器到解码器),第三个子层是一个前馈全连接子层。每个子层后都接有一个规范化层和一个残差连接。

输出部分:

  • 线性层:将解码器输出的向量转换为最终的输出维度。
  • Softmax层:将线性层的输出转换为概率分布,以便进行最终的预测。

解决问题

  • 长期依赖问题:在处理长序列输入时,传统的循环神经网络(RNN)会面临长期依赖问题,即难以捕捉序列中的远距离依赖关系。Transformer模型通过自注意力机制,能够在不同位置对序列中的每个元素赋予不同的重要性,从而有效地捕捉长距离依赖关系。
  • 并行计算问题:传统的RNN模型在计算时需要按照序列的顺序依次进行,无法实现并行计算,导致计算效率较低。而Transformer模型采用了编码器-解码器结构,允许模型在输入序列上进行编码,然后在输出序列上进行解码,从而实现了并行计算,大大提高了模型训练的速度。
  • 特征抽取问题:Transformer模型通过自注意力机制和多层神经网络结构,能够有效地从输入序列中抽取丰富的特征信息,为后续的任务提供更好的支持。

工作原理

Transformer工作原理

  • 输入线性变换:对于输入的Query(查询)、Key(键)和Value(值)向量,首先通过线性变换将它们映射到不同的子空间。这些线性变换的参数是模型需要学习的。
  • 分割多头:经过线性变换后,Query、Key和Value向量被分割成多个头。每个头都会独立地进行注意力计算。
  • 缩放点积注意力:在每个头内部,使用缩放点积注意力来计算Query和Key之间的注意力分数。这个分数决定了在生成输出时,模型应该关注Value向量的部分。
  • 注意力权重应用:将计算出的注意力权重应用于Value向量,得到加权的中间输出。这个过程可以理解为根据注意力权重对输入信息进行筛选和聚焦。
  • 拼接和线性变换:将所有头的加权输出拼接在一起,然后通过一个线性变换得到最终的Multi-Head Attention输出。

详情了解看这篇:神经网络算法 —— 一文搞懂Transformer !!_神经网络和transformer-CSDN博客

BERT

BERT是一种基于Transformer的预训练语言模型,它的最大创新之处在于引入了双向Transformer编码器,这使得模型可以同时考虑输入序列的前后上下文信息。

BERT架构

1. 输入层(Embedding):

  • Token Embeddings:将单词或子词转换为固定维度的向量。
  • Segment Embeddings:用于区分句子对中的不同句子。
  • Position Embeddings:由于Transformer模型本身不具备处理序列顺序的能力,所以需要加入位置嵌入来提供序列中单词的位置信息。

2. 编码层(Transformer Encoder):

  • BERT模型使用双向Transformer编码器进行编码。

3. 输出层(Pre-trained Task-specific Layers):

  • MLM输出层:用于预测被掩码(masked)的单词。在训练阶段,模型会随机遮盖输入序列中的部分单词,并尝试根据上下文预测这些单词。
  • NSP输出层:用于判断两个句子是否为连续的句子对。在训练阶段,模型会接收成对的句子作为输入,并尝试预测第二个句子是否是第一个句子的后续句子。

GPT

GPT也是一种基于Transformer的预训练语言模型,它的最大创新之处在于使用了单向Transformer编码器,这使得模型可以更好地捕捉输入序列的上下文信息。

GPT架构

1. 输入层(Input Embedding):

  • 将输入的单词或符号转换为固定维度的向量表示。
  • 可以包括词嵌入、位置嵌入等,以提供单词的语义信息和位置信息。

2. 编码层(Transformer Encoder):

  • GPT模型使用单向Transformer编码器进行编码和生成。

3. 输出层(Output Linear and Softmax):

  • 线性输出层将最后一个Transformer Decoder Block的输出转换为词汇表大小的向量。
  • Softmax函数将输出向量转换为概率分布,以便进行词汇选择或生成下一个单词。

参考:架构师带你玩转AI

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/720857.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一个完整的Flutter项目的基本构成

目录 1.页面跳转2.本地数据库和读取2.1 在pubspec.yaml中添加数据库框架依赖2.2 创建db.dart 初始化数据库并创建表2.3 安装JsonToDart插件2.4 创建实体类 user_bean.dart2.5 增删改查: 3.网络请求数据解析UI渲染 本篇主要总结下一个完整的Flutter项目有哪些基本构成…

徐工集团与宁夏天元锰业集团召开战略合作会议

2024年3月3日,徐工集团党委书记、董事长杨东升一行考察宁夏天元锰业集团,并举行战略合作会议。宁夏天元锰业集团董事局主席贾天将及相关高管参加会议。双方围绕绿色低碳、智能化和信息化推进新一轮机械设备“以旧换新”,物流运输和矿山开采设…

VSCode通过SSH连接Docker环境进行开发

文章目录 VSCode 插件Docker 镜像构建镜像部署环境 VSCode 连接本地Docker容器VSCode SSH连接Docker容器VSCode 打开容器内目录文件 VSCode 插件 Remote - SSH Docker 镜像 https://hub.docker.com/_/golang # Golang 镜像 docker pull golang:1.22构建镜像 Dockerfile F…

ThreadPoolExecutor 学习

ThreadPoolExecutor 是开发中最常用的线程池,今天来简单学习一下它的用法以及内部构造。 1、线程池存在的意义? 一般在jvm上,用户线程和操作系统内核线程是1:1的关系,也就是说,每次创建、销毁线程的时候&am…

Python基础:标准库 -- Time 时间的访问和转换

1. 官方文档 time --- 时间的访问和转换 — Python 3.12.2 文档 2. 准备知识 协调世界时 UTC (Coordinated Universal Time) 协调世界时(Coordinated Universal Time,UTC),是一种国际标准的时间表示方式。UTC 是以原子钟为基础…

【代码】Python3|无GUI环境中使用Seaborn作图的学习路线及代码(阴影折线图)

我有个需求是需要画图,让GPT帮我生成了一下学习计划。 学习路线依照GPT的来的,使用的Prompt工具是https://github.com/JushBJJ/Mr.-Ranedeer-AI-Tutor。 文章目录 PrerequisiteMain Curriculum1.1 Seaborn介绍Seaborn基础保存图形为文件练习 1.2 单变量数…

产品推荐 - GX-SOPC-5CEFA5-M484 FPGA核心开发板

● 核心板采用8层板精心设计 ● FPGA:采用Intel(ALTERA) Cyclone V 5CEFA5,Les为77K,内嵌存储器为4460Kb,硬件乘法器为300个,最大等效门数约2300万门;新增DSP Block(150…

Unity3D

一、C# 输入输出 二、三维数学

线性dp P1004 【方格取数】题解

代码比较简单的一题,重在思路(除非写假了) 传送门https://www.luogu.com.cn/problem/P1004 我的最初思路是两次二维dp,即贪心的取,用pre记录前一个位置,只有80pts,要是是在蓝桥拿分就可以跑路…

使用reduce递归获取有多层嵌套的数组中的children

常见的多层嵌套的数组,如下 const items [{id: 1,name: "item1",children: [{id: 11,name: "item11",children: [{id: 111, name: "item111"},{id: 112, name: "item112"}]},{id: 12,name: "item12",children:…

MySQL--优化(SQL语句执行慢,如何分析)

MySQL–优化(SQL语句执行慢,如何分析) 定位慢查询SQL执行计划索引 存储引擎索引底层数据结构聚簇和非聚簇索引索引创建原则索引失效场景 SQL优化经验 一、如何分析 聚合查询: 对于涉及大量数据的聚合操作,如果可能的…

【c++】STL--List的实现

目录 一. List的数据结构 二. List实现的基本框架 1. list的结点结构类 2. List的迭代器类 正向迭代器 反向迭代器 3. List操作接口的实现 1. 默认成员函数 构造函数 和 析构函数 拷贝构造函数 和 赋值运算符重载 2. 修改相关函数接口 insert 和 erase …

R语言简介、环境与基础语法及注释

R语言简介、环境与基础语法及注释 一、R语言1.R语言简介2.R语言官网3.R语言中国的镜像网站4.R语言下载5.R语言的历史 二、R语言环境1.Windows安装1.1 去 R 语言下载的镜像站点的列表下载1.2 选择版本进行下载1.3 点击运行1.4 一路默认,安装完毕! 2.Linux…

【AI视野·今日Robot 机器人论文速览 第八十期】Fri, 1 Mar 2024

AI视野今日CS.Robotics 机器人学论文速览 Fri, 1 Mar 2024 Totally 32 papers 👉上期速览✈更多精彩请移步主页 Daily Robotics Papers Humanoid Locomotion as Next Token Prediction Authors Ilija Radosavovic, Bike Zhang, Baifeng Shi, Jathushan Rajasegaran…

ShardingSphere-SQL 解析 Issue 处理流程

ShardingSphere-SQL 解析 Issue 处理流程 这是之前给社区写的 SQL 解析 Issue 的处理流程,可以帮助社区用户快速参与到 ShardingSphere-SQL 解析任务当中。 ShardingSphere SQL 解析 issue 列表 Issue 背景说明 当前 Issue 使用自定义的爬虫脚本从对应的数据库官…

MySQL-----视图

一 视图 ▶ 介绍 视图view是一个虚拟表,非真实存在,其本质是根据SQL语句获取动态的数据集,并为其命名,用户使用时只需使用视图名称即可获取结果集,并可以将其当作表来使用。 数据库中存放了视图的定义&…

Java程序员修炼之道 之 Logging

1. 一个最基本的例子 使用Logging框架写Log基本上就三个步骤 引入loggerg类和logger工厂类 声明logger 记录日志 下面看一个例子 //1. 引入slf4j接口的Logger和LoggerFactory import org.slf4j.Logger; import org.slf4j.LoggerFactory; public class UserService { //…

C#封装常用的Redis工具类

1.请先安装CSRedisCore 接口: namespace Tools.Redis {public interface IRedisTool{bool SetLongValue(string key, string value);bool SetValue(string key, string value, int outSecond);bool SetValue(string key, string value);bool Exists(string key);b…

企业数字人虚拟形象定制解决方案

随着数字化浪潮的推进,虚拟形象在各个领域都展现出了强大的潜力,美摄科技作为业界领先的数字人虚拟形象定制解决方案提供商,致力于为企业打造独一无二的虚拟形象,助力企业在数字世界中塑造独特的品牌形象。 一、解决方案概览 美…

02-prometheus监控-服务器节点监控node-exporter

一、概述 prometheus,本身是一个【数据收集】和【数据处理】的工具,如果效果要监控一台服务器物理机,有两种方式,一种是在物理机上部署“node-export”来收集数据上报给prometheus,另一种是“自定义监控”;…