(七步走写摘要): UserInformation bottleneck fusion for deep multi-view clustering

原摘要: Multi-view clustering aims to employ semantic information from multiple perspectives to accomplish the clustering task. However, a crucial concern in this domain is the selection of distinctive features. Most existing methods map data into a single feature space and then construct a similarity matrix, which often leads to an insufficient utilisation of intrinsic information in the data, meanwhile neglecting the impact of noise in the data, resulting in poor representation learning performance. Information bottleneck (IB) is a theoretical model based on information theory, the core idea of which is to extract information that is useful for a given task by selecting an appropriate representation and discarding redundant and irrelevant information. In this study, we propose an innovative IB fusion model for deep multi-view clustering (IBFDMVC), which operates on two distinct feature spaces and reconstructs semantic information in a parallel manner. IBFDMVC consists of three modules. The encoder module uses two linear encoding layers to learn and obtain embeddings with different dimensions. The fusion module adopts a collaborative training learning concept, where contrastive learning is first employed to enhance representation and IB theory is further used to reduce representation noise. Finally, clustering is performed using k-means in the clustering module. Compared with state-of-the-art multi-view clustering methods, IBFDMVC achieves better results, verifying the significant role of IB theory in providing a robust framework for feature selection and semantic information extraction in multi-view data analysis.

七步分如下(每一句都要有翻译):

  1. 交代背景:

    • "Multi-view clustering aims to employ semantic information from multiple perspectives to accomplish the clustering task."
    • 多视图聚类旨在利用来自多个视角的语义信息来完成聚类任务。
  2. 概括当前方法:

    • "Most existing methods map data into a single feature space and then construct a similarity matrix."
    • 大多数现有方法将数据映射到单一特征空间,然后构建相似性矩阵。
  3. 现有方法的不足:

    • "This often leads to an insufficient utilisation of intrinsic information in the data, meanwhile neglecting the impact of noise in the data, resulting in poor representation learning performance."
    • 这通常导致对数据中内在信息的利用不足,同时忽略了数据中噪声的影响,导致表示学习性能差。
  4. 提出当前的方法:

    • "We propose an innovative IB fusion model for deep multi-view clustering (IBFDMVC)."
    • 我们提出了一种创新的深度多视图聚类信息瓶颈融合模型(IBFDMVC)。
  5. 简要介绍方法:

    • "IBFDMVC operates on two distinct feature spaces and reconstructs semantic information in a parallel manner."
    • IBFDMVC在两个不同的特征空间上操作,并以并行方式重构语义信息。
  6. 如何实现或优化:

    • "The fusion module adopts a collaborative training learning concept, where contrastive learning is first employed to enhance representation and IB theory is further used to reduce representation noise."
    • 融合模块采用了协作训练学习概念,首先使用对比学习增强表示,然后进一步使用信息瓶颈理论减少表示噪声。
  7. 实验介绍:

    • "Compared with state-of-the-art multi-view clustering methods, IBFDMVC achieves better results."
    • 与最先进的多视图聚类方法相比,IBFDMVC取得了更好的结果。

总结: 本研究提出了一种基于信息瓶颈理论的深度多视图聚类新模型(IBFDMVC),该模型通过在两个独特的特征空间上操作并以并行方式重构语义信息来解决传统多视图聚类方法中特征选择不足和忽略数据噪声的问题。通过采用对比学习和信息瓶颈理论相结合的融合模块,IBFDMVC有效地增强了数据表示并减少了表示噪声,最终通过k-means聚类模块完成聚类任务

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/720727.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入探究SteamVR和VRTK:构建Unity中的沉浸式VR体验

在Unity开发环境中,SteamVR和VRTK(Virtual Reality Toolkit)是两个极为重要的工具集,它们为开发者提供了创建沉浸式虚拟现实(VR)体验所需的强大工具和接口。本文将深入探讨SteamVR和VRTK,从它们…

ftp几个常见错误问题及解决办法

1、无法上传网页,FTP故障-提示“无法连接服务器”错误。 问题出现原因:FTP客户端程序设置问题,客户上网线路问题,ftp服务器端问题。 处理方法:建议客户使用CUTPFTP软件来上传客户的网页,在“F…

智能驾驶规划控制理论学习06-基于优化的规划方法之数值优化基础

目录 一、优化概念 1、一般优化问题 2、全局最优和局部最优 二、无约束优化 1、无约束优化概述 2、梯度方法 通用框架 线性搜索 回溯搜索 3、梯度下降 基本思想 实现流程 ​4、牛顿法 基本思想 实现流程 5、高斯牛顿法 6、LM法(Le…

实践航拍小目标检测,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下的小目标检测识别分析系统

关于无人机相关的场景在我们之前的博文也有一些比较早期的实践,感兴趣的话可以自行移步阅读即可: 《deepLabV3Plus实现无人机航拍目标分割识别系统》 《基于目标检测的无人机航拍场景下小目标检测实践》 《助力环保河道水质监测,基于yolov…

高级货,极大提高效率,个人非常喜欢

软件简介: 软件【下载地址】获取方式见文末。注:推荐使用,更贴合此安装方法! FileConverter中文版是一款免费软件,具有强大的功能。它支持多种文件格式的转换,包括视频、音频、文档等。您可以批量转换文件…

bert 相似度任务训练简单版本,faiss 寻找相似 topk

目录 任务 代码 train.py predit.py faiss 最相似的 topk 数 任务 使用 bert-base-chinese 训练相似度任务,参考:微调BERT模型实现相似性判断 - 知乎 参考他上面代码,他使用的是 BertForNextSentencePrediction 模型,Bert…

Tomcat概念、安装及相关文件介绍

目录 一、web技术 1、C/S架构与B/S架构 1.1 http协议与C/S架构 1.2 http协议与B/S架构 2、前端三大核心技术 2.1 HTML(Hypertext Markup Language) 2.2 css(Cascading Style Sheets) 2.3 JavaScript 3、同步和异步 4、…

代码随想录-贪心算法(435. 无重叠区间、763. 划分字母区间、56. 合并区间)

435. 无重叠区间 class Solution { public:static bool cmp(const vector<int>& a, const vector<int>& b){return a[1]<b[1];}int eraseOverlapIntervals(vector<vector<int>>& intervals) {if (intervals.size()1) return 0;sort(in…

Node.js与Webpack笔记(一)

这里使用的16.19.0版本&#xff0c;官网和github没找到&#xff0c;去黑马2023年课程里找 篇幅较大会卡&#xff0c;此篇幅不写Webpack部分&#xff0c;留着下一篇 初识 1.什么是Node.js? Node.js 是一个独立的 JavaScript 运行环境&#xff0c;能独立执行 JS 代码&#xff…

【Linux】Linux原生异步IO:AIO

1、IO模型 1.1 简述 相信大家在搜索的时候,都会看到下面这张图,IO的使用场景:同步、异步、阻塞、非阻塞,可以组合成四种情况: 同步阻塞I/O: 用户进程进行I/O操作,一直阻塞到I/O操作完成为止。同步非阻塞I/O: 用户程序可以通过设置文件描述符的属性O_NONBLOCK,I/O操作可…

向微队列添加任务的四种方式

向微队列添加任务的四种方式 关于微任务&#xff0c;微队列&#xff0c;事件循环&#xff0c;可参考&#xff1a;深入&#xff1a;微任务与 Javascript 运行时环境 - Web API 接口参考 | MDN (mozilla.org) 先说答案, 四种方法&#xff1a; Promise.resolve().then();Mutation…

Golang Ants 构建协程池

构建的协程池实现两个目标&#xff1a; 1、限制协程池里开启的协程数量 2、当任务数大于协程数时&#xff0c;一个协程可以同时处理多个任务 3、监控是哪个协程ID处理了具体的任务 package mainimport ("fmt""runtime""strconv""string…

【Web前端入门学习】——HTML

目录 HTML简介HTML文件结构常用文本标签标题标签段落标签有序列表和无序列表表格标签 HTML属性a标签—超链接标签图片标签 HTML区块块元素与行内元素 HTML表单 HTML简介 HTML全称是Hypertext Markup Language超文本标记语言。 HTML的作用&#xff1a; 为网页提供结构&#xff…

数据库管理-第158期 Oracle Vector DB AI-09(20240304)

数据库管理158期 2024-03-04 数据库管理-第158期 Oracle Vector DB & AI-09&#xff08;20240304&#xff09;1 创建示例表2 添加过滤条件的向量近似查询示例1示例2示例3示例4示例5示例6示例7 总结 数据库管理-第158期 Oracle Vector DB & AI-09&#xff08;20240304&a…

C#插入排序算法

插入排序实现原理 插入排序算法是一种简单、直观的排序算法&#xff0c;其原理是将一个待排序的元素逐个地插入到已经排好序的部分中。 具体实现步骤如下 首先咱们假设数组长度为n&#xff0c;从第二个元素开始&#xff0c;将当前元素存储在临时变量temp中。 从当前元素的前一…

iOS 17.0 UIGraphicsBeginImageContextWithOptions 崩溃处理

在升级到iOS17后你会发现&#xff0c;之前版本运行的很好&#xff0c;这个版本突然会出现一个运行闪退。报错日志为*** Assertion failure in void _UIGraphicsBeginImageContextWithOptions(CGSize, BOOL, CGFloat, BOOL)(), UIGraphics.m:410 跟踪到具体的报错位置如下所示&a…

【芯片设计- RTL 数字逻辑设计入门 4 -- verilog 组合逻辑和时序逻辑】

文章目录 组合逻辑时序逻辑可综合设计模块结构缩写命令 组合逻辑 这种条件信号变化结果立即变化的 always 语句被称为“组合逻辑” 。 always (posedge clk)beginif(sel0)c < a b;elsec < a d; end时序逻辑 这种信号边沿触发&#xff0c; 即信号上升沿或者下降沿才变…

go写mysql取得自增字段值

场景&#xff1a;有多张表&#xff0c;依据其中一张表的自增字段取得 id 值作为对象ID&#xff0c;然后使用这个Id插入到其他它表中。 如下一张 MySQL 的 innodb 表 X&#xff0c;用 go 编写程序&#xff0c;不指定 a 的值&#xff0c;指定 b 和 c 的值&#xff0c;往表 X 插入…

阿里后台开发面经分析:如何才能更好地回答问题?

这一篇文章是来自群友分享阿里面试过程&#xff0c;我想通过这种情景模拟地方式来告诉大家在面试地时候&#xff0c;应该如何有条理地回答问题。 面试官: 能否解释一下简单工厂模式存在的问题&#xff0c;为何会违背开放-封闭原则&#xff1f; 求职者: 嗯&#xff0c;简单工厂…

第4章 HSA运行时

HSA运行时是一种精简的用户模式应用程序编程接口API&#xff0c;它提供了主机将计算内核启动到可用HSA代理程序所必须的接口。它可以分为两类&#xff1a;核心和扩展。HSA核心运行时API旨在支持HSA系统平台体系结构规范所需的操作&#xff0c;并且必须得到任何符合HSA的系统的支…