实践航拍小目标检测,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下的小目标检测识别分析系统

关于无人机相关的场景在我们之前的博文也有一些比较早期的实践,感兴趣的话可以自行移步阅读即可:

《deepLabV3Plus实现无人机航拍目标分割识别系统》

《基于目标检测的无人机航拍场景下小目标检测实践》

《助力环保河道水质监测,基于yolov5全系列模型【n/s/m/l/x】开发构建不同参数量级的无人机航拍河道污染漂浮物船只目标检测识别系统,集成GradCAM对模型检测识别能力进行分析》

《基于YOLO开发构建红外场景下无人机航拍车辆实例分割检测识别分析系统》

《基于轻量级YOLO模型开发构建大疆无人机检测系统》

《基于轻量级YOLOv5n/s/m三款模型开发构建基于无人机视角的高空红外目标检测识别分析系统,对比测试分析性能》

《基于目标检测实现遥感场景下的车辆检测计数》

《共建共创共享》

助力森林火情烟雾检测预警,基于YOLOv5全系列模型[n/s/m/l/x]开发构建无人机航拍场景下的森林火情检测识别系统》

《UAV 无人机检测实践分析》

《助力森林火情预警检测,基于YOLOv7-tiny、YOLOv7和YOLOv7x开发构建无人机航拍场景下的森林火情检测是别预警系统》

《无人机助力电力设备螺母缺销智能检测识别,python基于YOLOv5开发构建电力设备螺母缺销小目标检测识别系统》

《无人机助力电力设备螺母缺销智能检测识别,python基于YOLOv7开发构建电力设备螺母缺销小目标检测识别系统》

前面因为时间、资源等因素的限制我们没有办法对YOLOv8全系列不同参数的模型进行全面的对比分析,仅仅开发了最为轻量级的n系列的模型,感兴趣的话可以自行移步阅读即可: 

《实践航拍小目标检测,基于轻量级YOLOv8n开发构建无人机航拍场景下的小目标检测识别分析系统》

后续我们开发了YOLOv8全系列的参数模型,如下:
《实践航拍小目标检测,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下的小目标检测识别分析系统》

之后基于YOLOv7系列最为轻量级的tiny系列的模型开发构建了对应的检测模型如下:

《实践航拍小目标检测,基于轻量级YOLOv7tiny开发构建无人机航拍场景下的小目标检测识别分析系统》

首先看下实例效果:

本文是选择的是YOLOv5算法模型来完成本文项目的开发构建。相较于前两代的算法模型,YOLOv5可谓是集大成者,达到了SOTA的水平,下面简单对v3-v5系列模型的演变进行简单介绍总结方便对比分析学习:
【YOLOv3】
YOLOv3(You Only Look Once version 3)是一种基于深度学习的快速目标检测算法,由Joseph Redmon等人于2018年提出。它的核心技术原理和亮点如下:
技术原理:
YOLOv3采用单个神经网络模型来完成目标检测任务。与传统的目标检测方法不同,YOLOv3将目标检测问题转化为一个回归问题,通过卷积神经网络输出图像中存在的目标的边界框坐标和类别概率。
YOLOv3使用Darknet-53作为骨干网络,用来提取图像特征。检测头(detection head)负责将提取的特征映射到目标边界框和类别预测。
亮点:
YOLOv3在保持较高的检测精度的同时,能够实现非常快的检测速度。相较于一些基于候选区域的目标检测算法(如Faster R-CNN、SSD等),YOLOv3具有更高的实时性能。
YOLOv3对小目标和密集目标的检测效果较好,同时在大目标的检测精度上也有不错的表现。
YOLOv3具有较好的通用性和适应性,适用于各种目标检测任务,包括车辆检测、行人检测等。
【YOLOv4】
YOLOv4是一种实时目标检测模型,它在速度和准确度上都有显著的提高。相比于其前一代模型YOLOv3,YOLOv4在保持较高的检测精度的同时,还提高了检测速度。这主要得益于其采用的CSPDarknet53网络结构,主要有三个方面的优点:增强CNN的学习能力,使得在轻量化的同时保持准确性;降低计算瓶颈;降低内存成本。YOLOv4的目标检测策略采用的是“分而治之”的策略,将一张图片平均分成7×7个网格,每个网格分别负责预测中心点落在该网格内的目标。这种方法不需要额外再设计一个区域提议网络(RPN),从而减少了训练的负担。然而,尽管YOLOv4在许多方面都表现出色,但它仍然存在一些不足。例如,小目标检测效果较差。此外,当需要在资源受限的设备上部署像YOLOv4这样的大模型时,模型压缩是研究人员重新调整较大模型所需资源消耗的有用工具。
优点:
速度:YOLOv4 保持了 YOLO 算法一贯的实时性,能够在检测速度和精度之间实现良好的平衡。
精度:YOLOv4 采用了 CSPDarknet 和 PANet 两种先进的技术,提高了检测精度,特别是在检测小型物体方面有显著提升。
通用性:YOLOv4 适用于多种任务,如行人检测、车辆检测、人脸检测等,具有较高的通用性。
模块化设计:YOLOv4 中的组件可以方便地更换和扩展,便于进一步优化和适应不同场景。
缺点:
内存占用:YOLOv4 模型参数较多,因此需要较大的内存来存储和运行模型,这对于部分硬件设备来说可能是一个限制因素。
训练成本:YOLOv4 模型需要大量的训练数据和计算资源才能达到理想的性能,这可能导致训练成本较高。
精确度与速度的权衡:虽然 YOLOv4 在速度和精度之间取得了较好的平衡,但在极端情况下,例如检测高速移动的物体或复杂背景下的物体时,性能可能会受到影响。
误检和漏检:由于 YOLOv4 采用单一网络对整个图像进行预测,可能会导致一些误检和漏检现象。

【YOLOv5】
YOLOv5是一种快速、准确的目标检测模型,由Glen Darby于2020年提出。相较于前两代模型,YOLOv5集成了众多的tricks达到了性能的SOTA:
技术原理:
YOLOv5同样采用单个神经网络模型来完成目标检测任务,但采用了新的神经网络架构,融合了领先的轻量级模型设计理念。YOLOv5使用较小的骨干网络和新的检测头设计,以实现更快的推断速度,并在不降低精度的前提下提高目标检测的准确性。
亮点:
YOLOv5在模型结构上进行了改进,引入了更先进的轻量级网络架构,因此在速度和精度上都有所提升。
YOLOv5支持更灵活的模型大小和预训练选项,可以根据任务需求选择不同大小的模型,同时提供丰富的数据增强扩展、模型集成等方法来提高检测精度。YOLOv5通过使用更简洁的代码实现,提高了模型的易用性和可扩展性。

简单看下实例数据情况:

训练数据配置文件如下:

# Dataset
path: ./dataset
train:- images/train
val:- images/test
test:- images/test# Classes
names:0: pedestrian1: people2: bicycle3: car4: van5: truck6: tricycle7: awning-tricycle8: bus9: motor

实验截止目前,本文将YOLOv5系列五款不同参数量级的模型均进行了开发评测,接下来看下模型详情:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5# Parameters
nc: 10  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 1024]l: [1.00, 1.00, 1024]x: [1.33, 1.25, 1024]# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)]

在实验训练开发阶段,所有的模型均保持完全相同的参数设置,等待训练完成后,来整体进行评测对比分析。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

从整体实验对比结果来看:这五款不同参数量级的模型效果上差异层次分明,n<s<m<l<x。这里我们最终选择使用l系列的模型来作为最终的推理模型,接下来看下l系列模型的内容详情。

【Batch实例】

【数据分布可视化】

【PR曲线】

【训练可视化】

【混淆矩阵】

【离线推理实例】

感兴趣的话都可以自行动手尝试下!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv5s

全系列五个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/720723.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高级货,极大提高效率,个人非常喜欢

软件简介&#xff1a; 软件【下载地址】获取方式见文末。注&#xff1a;推荐使用&#xff0c;更贴合此安装方法&#xff01; FileConverter中文版是一款免费软件&#xff0c;具有强大的功能。它支持多种文件格式的转换&#xff0c;包括视频、音频、文档等。您可以批量转换文件…

bert 相似度任务训练简单版本,faiss 寻找相似 topk

目录 任务 代码 train.py predit.py faiss 最相似的 topk 数 任务 使用 bert-base-chinese 训练相似度任务&#xff0c;参考&#xff1a;微调BERT模型实现相似性判断 - 知乎 参考他上面代码&#xff0c;他使用的是 BertForNextSentencePrediction 模型&#xff0c;Bert…

Tomcat概念、安装及相关文件介绍

目录 一、web技术 1、C/S架构与B/S架构 1.1 http协议与C/S架构 1.2 http协议与B/S架构 2、前端三大核心技术 2.1 HTML&#xff08;Hypertext Markup Language&#xff09; 2.2 css&#xff08;Cascading Style Sheets&#xff09; 2.3 JavaScript 3、同步和异步 4、…

Node.js与Webpack笔记(一)

这里使用的16.19.0版本&#xff0c;官网和github没找到&#xff0c;去黑马2023年课程里找 篇幅较大会卡&#xff0c;此篇幅不写Webpack部分&#xff0c;留着下一篇 初识 1.什么是Node.js? Node.js 是一个独立的 JavaScript 运行环境&#xff0c;能独立执行 JS 代码&#xff…

【Linux】Linux原生异步IO:AIO

1、IO模型 1.1 简述 相信大家在搜索的时候,都会看到下面这张图,IO的使用场景:同步、异步、阻塞、非阻塞,可以组合成四种情况: 同步阻塞I/O: 用户进程进行I/O操作,一直阻塞到I/O操作完成为止。同步非阻塞I/O: 用户程序可以通过设置文件描述符的属性O_NONBLOCK,I/O操作可…

向微队列添加任务的四种方式

向微队列添加任务的四种方式 关于微任务&#xff0c;微队列&#xff0c;事件循环&#xff0c;可参考&#xff1a;深入&#xff1a;微任务与 Javascript 运行时环境 - Web API 接口参考 | MDN (mozilla.org) 先说答案, 四种方法&#xff1a; Promise.resolve().then();Mutation…

【Web前端入门学习】——HTML

目录 HTML简介HTML文件结构常用文本标签标题标签段落标签有序列表和无序列表表格标签 HTML属性a标签—超链接标签图片标签 HTML区块块元素与行内元素 HTML表单 HTML简介 HTML全称是Hypertext Markup Language超文本标记语言。 HTML的作用&#xff1a; 为网页提供结构&#xff…

数据库管理-第158期 Oracle Vector DB AI-09(20240304)

数据库管理158期 2024-03-04 数据库管理-第158期 Oracle Vector DB & AI-09&#xff08;20240304&#xff09;1 创建示例表2 添加过滤条件的向量近似查询示例1示例2示例3示例4示例5示例6示例7 总结 数据库管理-第158期 Oracle Vector DB & AI-09&#xff08;20240304&a…

C#插入排序算法

插入排序实现原理 插入排序算法是一种简单、直观的排序算法&#xff0c;其原理是将一个待排序的元素逐个地插入到已经排好序的部分中。 具体实现步骤如下 首先咱们假设数组长度为n&#xff0c;从第二个元素开始&#xff0c;将当前元素存储在临时变量temp中。 从当前元素的前一…

iOS 17.0 UIGraphicsBeginImageContextWithOptions 崩溃处理

在升级到iOS17后你会发现&#xff0c;之前版本运行的很好&#xff0c;这个版本突然会出现一个运行闪退。报错日志为*** Assertion failure in void _UIGraphicsBeginImageContextWithOptions(CGSize, BOOL, CGFloat, BOOL)(), UIGraphics.m:410 跟踪到具体的报错位置如下所示&a…

第4章 HSA运行时

HSA运行时是一种精简的用户模式应用程序编程接口API&#xff0c;它提供了主机将计算内核启动到可用HSA代理程序所必须的接口。它可以分为两类&#xff1a;核心和扩展。HSA核心运行时API旨在支持HSA系统平台体系结构规范所需的操作&#xff0c;并且必须得到任何符合HSA的系统的支…

Java多线程导入Excel示例

在导入Excel的时候&#xff0c;如果文件比较大&#xff0c;行数很多&#xff0c;一行行读往往速度比较慢&#xff0c;为了加快导入速度&#xff0c;我们可以采用多线程的方式 话不多说直接上代码 首先是Controller import com.sakura.base.service.ExcelService; import com.s…

智慧城市中的数字孪生:数字孪生技术助力智慧城市提高公共服务水平

目录 一、引言 二、数字孪生技术概述 三、数字孪生技术在智慧城市中的应用 1、智慧交通管理 2、智慧能源管理 3、智慧环保管理 4、智慧公共安全 四、数字孪生技术助力智慧城市提高公共服务水平的价值 五、挑战与前景 六、结论 一、引言 随着信息技术的飞速发展&…

【LeetCode】升级打怪之路 Day 13:优先级队列的应用

今日题目&#xff1a; 23. 合并 K 个升序链表 | LeetCode378. 有序矩阵中第 K 小的元素 | LeetCode373. 查找和最小的 K 对数字 | LeetCode703. 数据流中的第 K 大元素 | LeetCode347. 前 K 个高频元素 | LeetCode 目录 Problem 1&#xff1a;合并多个有序链表 【classic】LC 2…

【蓝牙协议栈】【BR/EDR】【AVDTP】音视频分布传输协议

1. AVDTP概念 AVDTP即 AUDIO/VIDEO DISTRIBUTION TRANSPORT PROTOCOL(音视频分配传输协议),主要负责 A/V stream的协商、建立及传输程序,还指定了设备之前传输A/V stream的消息格式. AVDTP的传输机制和消息格式是以 RTP为基础的。RTP由 RTP Data Transfer Protocol (RTP)和…

【软考高项】【计算专题】- 5 - 进度类 - 横道图/甘特图

一、知识点 1、基本定义 甘特图(Gantt chart )又称为横道图、条状图(Bar chart)&#xff0c;通过条状图来显示项目各活动的进 度情况。以提出者亨利劳伦斯甘特( Henry Laurence Gantt)先生的名字命名。 目前许多文档工具都可以画甘特图。 &#xff08;1&#xff09;我的举例 …

07. Nginx进阶-Nginx负载均衡

简介 负载均衡 什么是负载均衡&#xff1f; 负载均衡&#xff0c;英文名称为Load Balance&#xff0c;其含义就是指将负载&#xff08;工作任务&#xff09;进行平衡、分摊到多个操作单元上进行运行。 Nginx负载均衡 什么是Nginx负载均衡&#xff1f; Nginx负载均衡可以大…

计算机网络-典型网络组网架构

前面基本网络知识已经能够满足中小企业的需要了&#xff0c;今天来看下一些基本网络组网架构。 首先网络是分层架构&#xff0c;从接入层到汇聚层再到核心层&#xff0c;然后接入运营商出口。内部包括有线网络、无线网络&#xff0c;出口一般可以使用路由器或者防火墙进行安全防…

StarRocks实战——vivo基于 StarRocks 构建实时大数据平台

目录 前言 一、数据挑战 1.1 时效性挑战&#xff0c;业务分析决策需加速 1.2 访问量挑战&#xff0c;性能与稳定性亟待提高&#xff0c;支撑业务稳定运行 1.3 计算场景挑战&#xff0c;难以满足业务复杂查询需求 1.4. 运维挑战&#xff0c;用户查询体验需优化 二、OLA…

WebDAV之π-Disk派盘+人生Life

人生Life是一款日程软件,在这款待办的日程软件当中各种功能极为的完善,完全的足够用户在日常当中的使用,你的待办方面的各种内容都能够在软件上面进行规划和填充,通过待办事项来帮助用户提高在日常当中的效率,对于用户来说这款待办事项的软件是绝佳的选择。 π-Disk派盘 …