目标
- 了解文本数据分析的作用.
- 掌握常用的几种文本数据分析方法.
1 文件数据分析介绍
-
文本数据分析的作用:
- 文本数据分析能够有效帮助我们理解数据语料, 快速检查出语料可能存在的问题, 并指导之后模型训练过程中一些超参数的选择.
-
常用的几种文本数据分析方法:
- 标签数量分布
- 句子长度分布
- 词频统计与关键词词云
2 数据集说明
-
基于真实的中文酒店评论语料来解析常用的几种文本数据分析方法.
-
中文酒店评论语料:
- 属于二分类的中文情感分析语料, 该语料存放在"./cn_data"目录下.
- 其中train.tsv代表训练集, dev.tsv代表验证集, 二者数据样式相同.
-
train.tsv数据样式:
sentence label
早餐不好,服务不到位,晚餐无西餐,早餐晚餐相同,房间条件不好,餐厅不分吸烟区.房间不分有无烟房. 0
去的时候 ,酒店大厅和餐厅在装修,感觉大厅有点挤.由于餐厅装修本来该享受的早饭,也没有享受(他们是8点开始每个房间送,但是我时间来不及了)不过前台服务员态度好! 1
有很长时间没有在西藏大厦住了,以前去北京在这里住的较多。这次住进来发现换了液晶电视,但网络不是很好,他们自己说是收费的原因造成的。其它还好。 1
非常好的地理位置,住的是豪华海景房,打开窗户就可以看见栈桥和海景。记得很早以前也住过,现在重新装修了。总的来说比较满意,以后还会住 1
交通很方便,房间小了一点,但是干净整洁,很有香港的特色,性价比较高,推荐一下哦 1
酒店的装修比较陈旧,房间的隔音,主要是卫生间的隔音非常差,只能算是一般的 0
酒店有点旧,房间比较小,但酒店的位子不错,就在海边,可以直接去游泳。8楼的海景打开窗户就是海。如果想住在热闹的地带,这里不是一个很好的选择,不过威海城市真的比较小,打车还是相当便宜的。晚上酒店门口出租车比较少。 1
位置很好,走路到文庙、清凉寺5分钟都用不了,周边公交车很多很方便,就是出租车不太爱去(老城区路窄爱堵车),因为是老宾馆所以设施要陈旧些, 1
酒店设备一般,套房里卧室的不能上网,要到客厅去。 0
- train.tsv数据样式说明:
- train.tsv中的数据内容共分为2列, 第一列数据代表具有感情色彩的评论文本; 第二列数据, 0或1, 代表每条文本数据是积极或者消极的评论, 0代表消极, 1代表积极.
3 获取标签数量分布
# 导入必备工具包
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
# 设置显示风格
plt.style.use('fivethirtyeight') # 分别读取训练tsv和验证tsv
train_data = pd.read_csv("data/cn_data/train.tsv", sep="\t")
valid_data = pd.read_csv("data/cn_data/dev.tsv", sep="\t")# 获得训练数据标签数量分布
sns.countplot("label", data=train_data)
plt.title("train_data")
plt.show()# 获取验证数据标签数量分布
sns.countplot("label", data=valid_data)
plt.title("valid_data")
plt.show()
- 训练集标签数量分布:
- 验证集标签数量分布:
- 分析:
- 在深度学习模型评估中, 我们一般使用ACC作为评估指标, 若想将ACC的基线定义在50%左右, 则需要我们的正负样本比例维持在1:1左右, 否则就要进行必要的数据增强或数据删减. 上图中训练和验证集正负样本都稍有不均衡, 可以进行一些数据增强.
4 获取句子长度分布
# 在训练数据中添加新的句子长度列, 每个元素的值都是对应的句子列的长度
train_data["sentence_length"] = list(map(lambda x: len(x), train_data["sentence"]))# 绘制句子长度列的数量分布图
sns.countplot("sentence_length", data=train_data)
# 主要关注count长度分布的纵坐标, 不需要绘制横坐标, 横坐标范围通过dist图进行查看
plt.xticks([])
plt.show()# 绘制dist长度分布图
sns.distplot(train_data["sentence_length"])# 主要关注dist长度分布横坐标, 不需要绘制纵坐标
plt.yticks([])
plt.show()# 在验证数据中添加新的句子长度列, 每个元素的值都是对应的句子列的长度
valid_data["sentence_length"] = list(map(lambda x: len(x), valid_data["sentence"]))# 绘制句子长度列的数量分布图
sns.countplot("sentence_length", data=valid_data)# 主要关注count长度分布的纵坐标, 不需要绘制横坐标, 横坐标范围通过dist图进行查看
plt.xticks([])
plt.show()# 绘制dist长度分布图
sns.distplot(valid_data["sentence_length"])# 主要关注dist长度分布横坐标, 不需要绘制纵坐标
plt.yticks([])
plt.show()
- 训练集句子长度分布:
- 验证集句子长度分布:
- 分析:
- 通过绘制句子长度分布图, 可以得知我们的语料中大部分句子长度的分布范围, 因为模型的输入要求为固定尺寸的张量,合理的长度范围对之后进行句子截断补齐(规范长度)起到关键的指导作用. 上图中大部分句子长度的范围大致为20-250之间.
5 获取正负样本长度散点分布
# 绘制训练集长度分布的散点图
sns.stripplot(y='sentence_length',x='label',data=train_data)
plt.show()# 绘制验证集长度分布的散点图
sns.stripplot(y='sentence_length',x='label',data=valid_data)
plt.show()
- 训练集上正负样本的长度散点分布:
- 验证集上正负样本的长度散点分布:
- 分析:
- 通过查看正负样本长度散点图, 可以有效定位异常点的出现位置, 帮助我们更准确进行人工语料审查. 上图中在训练集正样本中出现了异常点, 它的句子长度近3500左右, 需要我们人工审查.
6 获取不同词汇总数统计
# 导入jieba用于分词
# 导入chain方法用于扁平化列表
import jieba
from itertools import chain# 进行训练集的句子进行分词, 并统计出不同词汇的总数
train_vocab = set(chain(*map(lambda x: jieba.lcut(x), train_data["sentence"])))
print("训练集共包含不同词汇总数为:", len(train_vocab))# 进行验证集的句子进行分词, 并统计出不同词汇的总数
valid_vocab = set(chain(*map(lambda x: jieba.lcut(x), valid_data["sentence"])))
print("训练集共包含不同词汇总数为:", len(valid_vocab))
- 输出效果:
训练集共包含不同词汇总数为: 12147
训练集共包含不同词汇总数为: 6857
7 获取训练集高频形容词词云
# 使用jieba中的词性标注功能
import jieba.posseg as psegdef get_a_list(text):"""用于获取形容词列表"""# 使用jieba的词性标注方法切分文本,获得具有词性属性flag和词汇属性word的对象, # 从而判断flag是否为形容词,来返回对应的词汇r = []for g in pseg.lcut(text):if g.flag == "a":r.append(g.word)return r# 导入绘制词云的工具包
from wordcloud import WordClouddef get_word_cloud(keywords_list):# 实例化绘制词云的类, 其中参数font_path是字体路径, 为了能够显示中文, # max_words指词云图像最多显示多少个词, background_color为背景颜色 wordcloud = WordCloud(font_path="./SimHei.ttf", max_words=100, background_color="white")# 将传入的列表转化成词云生成器需要的字符串形式keywords_string = " ".join(keywords_list)# 生成词云wordcloud.generate(keywords_string)# 绘制图像并显示plt.figure()plt.imshow(wordcloud, interpolation="bilinear")plt.axis("off")plt.show()# 获得训练集上正样本
p_train_data = train_data[train_data["label"]==1]["sentence"]# 对正样本的每个句子的形容词
train_p_a_vocab = chain(*map(lambda x: get_a_list(x), p_train_data))
#print(train_p_n_vocab)# 获得训练集上负样本
n_train_data = train_data[train_data["label"]==0]["sentence"]# 获取负样本的每个句子的形容词
train_n_a_vocab = chain(*map(lambda x: get_a_list(x), n_train_data))# 调用绘制词云函数
get_word_cloud(train_p_a_vocab)
get_word_cloud(train_n_a_vocab)
- 训练集正样本形容词词云:
- 训练集负样本形容词词云:
8 获取验证集形容词词云
# 获得验证集上正样本
p_valid_data = valid_data[valid_data["label"]==1]["sentence"]# 对正样本的每个句子的形容词
valid_p_a_vocab = chain(*map(lambda x: get_a_list(x), p_valid_data))
#print(train_p_n_vocab)# 获得验证集上负样本
n_valid_data = valid_data[valid_data["label"]==0]["sentence"]# 获取负样本的每个句子的形容词
valid_n_a_vocab = chain(*map(lambda x: get_a_list(x), n_valid_data))# 调用绘制词云函数
get_word_cloud(valid_p_a_vocab)
get_word_cloud(valid_n_a_vocab)
- 验证集正样本形容词词云:
- 验证集负样本形容词词云:
- 分析:
- 根据高频形容词词云显示, 我们可以对当前语料质量进行简单评估, 同时对违反语料标签含义的词汇进行人工审查和修正, 来保证绝大多数语料符合训练标准. 上图中的正样本大多数是褒义词, 而负样本大多数是贬义词, 基本符合要求, 但是负样本词云中也存在"便利"这样的褒义词, 因此可以人工进行审查.