算法沉淀——动态规划之01背包问题(leetcode真题剖析)

在这里插入图片描述

算法沉淀——动态规划之01背包问题

  • 01.【模板】01背包
  • 02.分割等和子集
  • 03.目标和
  • 04.最后一块石头的重量 II

01背包问题是一类经典的动态规划问题,通常描述为:有一个固定容量的背包,以及一组物品,每件物品都有重量和价值,目标是找到在背包容量范围内,使得背包中的物品总价值最大的组合。

具体来说,问题的输入包括:

  1. 一个固定容量的背包(通常表示为一个整数W)。
  2. 一组物品,每个物品有两个属性:重量(通常表示为一个整数weight)和价值(通常表示为一个整数value)。
  3. 求解的目标是找到一种放置物品的方式,使得放入背包的物品的总重量不超过背包容量,并且总价值最大。

这个问题的特点是,对于每件物品,你只能选择将其放入背包一次(0-1,因此称为“01背包”),或者不放入背包。不能将物品切割成更小的部分放入背包,要么整个物品放入背包,要么不放入。

动态规划解法

  1. 定义状态: 通常使用二维数组dp[i][j]表示在前i个物品中,背包容量为j时的最大总价值。

  2. 状态转移方程: 考虑第i个物品,可以选择放入背包或者不放入。如果选择放入,那么总价值为dp[i-1][j-weight[i]] + value[i],即前i-1个物品的总价值加上当前物品的价值。如果选择不放入,那么总价值为dp[i-1][j],即前i-1个物品的总价值。因此,状态转移方程为:

    dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i])
    

    其中,dp[i-1][j]表示不放入第i个物品,dp[i-1][j-weight[i]] + value[i]表示放入第i个物品。

  3. 初始条件:i=0时,表示前0个物品,总价值为0;当j=0时,表示背包容量为0,总价值也为0。

  4. 遍历顺序: 外层循环遍历物品,内层循环遍历背包容量。

  5. 返回结果: 最终结果存储在dp[N][W]中,其中N为物品数量,W为背包容量。

例子

假设有如下物品:

Copy code解释物品1:重量=2,价值=3
物品2:重量=3,价值=4
物品3:重量=4,价值=5
物品4:重量=5,价值=6

背包容量为W=8,我们要求解在这个条件下的最大总价值。

按照上述动态规划解法,构建状态转移表如下:

luaCopy code解释  重量/价值   0   1   2   3   4   5   6   7   8----------------------------------------------物品0        0   0   0   0   0   0   0   0   0物品1        0   0   3   3   3   3   3   3   3物品2        0   0   3   4   4   7   7   7  10物品3        0   0   3   4   4   7   8   8  11物品4        0   0   3   4   4   7   8   9  11

因此,最终结果为dp[4][8] = 11,表示在背包容量为8的情况下,最大总价值为11。这意味着最优解是选择物品2和物品4放入背包。

01.【模板】01背包

题目链接:https://www.nowcoder.com/practice/fd55637d3f24484e96dad9e992d3f62e?tpId=230&tqId=2032484&ru=/exam/oj&qru=/ta/dynamic-programming/question-ranking&sourceUrl=%2Fexam%2Foj%3Fpage%3D1%26tab%3D%25E7%25AE%2597%25E6%25B3%2595%25E7%25AF%2587%26topicId%3D196

你有一个背包,最多能容纳的体积是V。

现在有n个物品,第i个物品的体积为vi,价值为wi。

(1)求这个背包至多能装多大价值的物品?

(2)若背包恰好装满,求至多能装多大价值的物品?

输入描述

第一行两个整数n和V,表示物品个数和背包体积。

接下来n行,每行两个数vi和wi,表示第i个物品的体积和价值。

1≤n,V;vi,wi≤1000

输出描述

输出有两行,第一行输出第一问的答案,第二行输出第二问的答案,如果无解请输出0。

示例1

输入

3 5
2 10
4 5
1 4

输出

14
9

复制

说明:

装第一个和第三个物品时总价值最大,但是装第二个和第三个物品可以使得背包恰好装满且总价值最大。 

示例2

输入

3 8
12 6
11 8
6 8

输出

8
0

说明

装第三个物品时总价值最大但是不满,装满背包无解。 要求O(nV)的时间复杂度,O(V)空间复杂度

思路

第一问:

  1. 状态表示:
    • dp[i][j] 表示从前 i 个物品中挑选,总体积不超过 j 的情况下,所有的选法中能挑选出的最大价值。
  2. 状态转移方程:
    • 对于每个物品,我们有两种选择:
      • 不选第 i 个物品:此时 dp[i][j] = dp[i - 1][j]
      • 选择第 i 个物品:此时需要确保总体积不超过 j - v[i],而且该状态是合法的,即 j >= v[i]dp[i - 1][j - v[i]] 存在。状态转移方程为 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i])
  3. 初始化:
    • 多加一行,第一行初始化为 0,因为不选任何物品总体积为 0时,价值为 0
  4. 填表顺序:
    • 从上往下,每一行从左往右填表。
  5. 返回值:
    • 返回 dp[n][V],即最后一行最后一列的值。

第二问:

  1. 状态表示:
    • dp[i][j] 表示从前 i 个物品中挑选,总体积正好等于 j 的情况下,所有的选法中能挑选出的最大价值。
  2. 状态转移方程:
    • dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i])
    • 在使用 dp[i - 1][j - v[i]] 时,需要判断 j >= v[i]dp[i - 1][j - v[i]] 是否为 -1
  3. 初始化:
    • 多加一行,第一格初始化为 0,表示正好凑齐体积为 0的背包。
    • 第一行后面的格子初始化为 -1,因为没有物品,无法满足体积大于 0的情况。
  4. 填表顺序:
    • 从上往下,每一行从左往右填表。
  5. 返回值:
    • 由于最后可能凑不成体积为 V 的情况,需要特判。

代码

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;const int N=1002;
int n,V,v[N],w[N];
int dp[N][N];int main() {cin>>n>>V;for(int i=1;i<=n;i++) cin>>v[i]>>w[i];for(int i=1;i<=n;i++)for(int j=0;j<=V;j++){dp[i][j]=dp[i-1][j];if(j>=v[i]) dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);}cout<<dp[n][V]<<endl;memset(dp,0,sizeof dp);for(int j=1;j<=V;j++) dp[0][j]=-1;for(int i=1;i<=n;i++)for(int j=0;j<=V;j++){dp[i][j]=dp[i-1][j];if(j>=v[i]&&dp[i-1][j-v[i]]!=-1)dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);}cout<<(dp[n][V]==-1?0:dp[n][V])<<endl;
}

优化步骤:

  1. 滚动数组的应用:
    • 在01背包问题中,通过滚动数组可以删去所有的横坐标,因为状态 dp[i][j] 只依赖于上一行的状态 dp[i-1][j]dp[i-1][j-v[i]],因此只需保留一行状态。
  2. 遍历顺序修改:
    • 修改了 j 的遍历顺序,原本的遍历是从 0V,现在改为从 V0。这样做的原因是,如果从 0V 遍历,会使用当前行的 dp[i-1][j-v[i]] 的值,而我们已经在上一步的滚动数组中删除了这一行,所以需要改变遍历顺序,从 V0
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;const int N=1002;
int n,V,v[N],w[N];
int dp[N];int main() {cin>>n>>V;for(int i=1;i<=n;i++) cin>>v[i]>>w[i];for(int i=1;i<=n;i++)for(int j=V;j>=v[i];j--)dp[j]=max(dp[j],dp[j-v[i]]+w[i]);cout<<dp[V]<<endl;memset(dp,0,sizeof dp);for(int j=1;j<=V;j++) dp[j]=-1;for(int i=1;i<=n;i++)for(int j=V;j>=v[i];j--)if(dp[j-v[i]]!=-1)dp[j]=max(dp[j],dp[j-v[i]]+w[i]);cout<<(dp[V]==-1?0:dp[V])<<endl;
}

02.分割等和子集

题目链接:https://leetcode.cn/problems/partition-equal-subset-sum/

给你一个 只包含正整数非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例 1:

输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

示例 2:

输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

思路

  1. 状态表达:
    • dp[i][j] 表示在前 i 个元素中选择,所有的选法中,能否凑成总和为 j 这个数。
  2. 状态转移方程:
    • 根据最后一个位置的元素,分两种情况讨论:
      • 不选择 nums[i]:此时是否能够凑成总和为 j 取决于前 i-1 个元素的情况,即 dp[i][j] = dp[i-1][j]
      • 选择 nums[i]:如果 nums[i] 小于等于 j,则需要看前 i-1 个元素中是否能凑成总和为 j - nums[i],即 dp[i][j] = dp[i][j] || dp[i-1][j - nums[i]]
  3. 初始化:
    • 第一行表示不选择任何元素,要凑成目标和 j,只有当目标和为 0 时才能做到,因此第一行仅需初始化第一个元素 dp[0][0] = true
  4. 填表顺序:
    • 根据状态转移方程,从上往下填写每一行,每一行的顺序是无所谓的。
  5. 返回值:
    • 根据状态表达,返回 dp[n][aim] 的值,其中 n 表示数组的大小, aim 表示要凑的目标和。
  6. 空间优化:
    • 对于 01 背包类型的问题,可以进行空间上的优化,即删除第一维,并修改第二层循环的遍历顺序。

代码

class Solution {
public:bool canPartition(vector<int>& nums) {int n=nums.size(),sum=0;for(int x:nums) sum+=x;if(sum%2) return false;int aim=sum/2;vector<vector<bool>> dp(n+1,vector<bool>(aim+1));for(int i=0;i<=n;i++) dp[i][0]=true;for(int i=1;i<=n;i++)for(int j=1;j<=aim;j++){dp[i][j]=dp[i-1][j];if(j>=nums[i-1]) dp[i][j]=dp[i][j]||dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

空间优化

class Solution {
public:bool canPartition(vector<int>& nums) {int n=nums.size(),sum=0;for(int x:nums) sum+=x;if(sum%2) return false;int aim=sum/2;vector<bool> dp(aim+1);dp[0]=true;for(int i=1;i<=n;i++)for(int j=aim;j>=nums[i-1];j--)dp[j]=dp[j]||dp[j-nums[i-1]];return dp[aim];}
};

03.目标和

题目链接:https://leetcode.cn/problems/target-sum/

给你一个非负整数数组 nums 和一个整数 target

向数组中的每个整数前添加 '+''-' ,然后串联起所有整数,可以构造一个 表达式

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1"

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

提示:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000

思路

  1. 状态表示:
    • dp[i][j] 表示在前 i 个数中选,总和正好等于 j,一共有多少种选法。
  2. 状态转移方程:
    • 根据最后一个位置的元素,结合题目的要求,有两种策略:
      • 不选 nums[i]:此时凑成总和 j 的总方案数,要看在前 i-1 个元素中选,凑成总和为 j 的方案数,即 dp[i][j] = dp[i-1][j]
      • 选择 nums[i]:如果 nums[i] 小于等于 j,则需要看前 i-1 个元素中是否能凑成总和为 j - nums[i],即 dp[i][j] += dp[i-1][j - nums[i]]
  3. 初始化:
    • 需要用到上一行的数据,因此初始化第一行,表示不选择任何元素凑成目标和 j。只有当目标和为 0 时才能做到,因此第一行仅需初始化第一个元素 dp[0][0] = 1
  4. 填表顺序:
    • 根据状态转移方程,从上往下填写每一行,每一行的顺序是无所谓的。
  5. 返回值:
    • 根据状态表示,返回 dp[n][aim] 的值,其中 n 表示数组的大小, aim 表示要凑的目标和。

代码

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {int sum=0;for(auto x:nums) sum+=x;int aim=(sum+target)/2;if(aim<0||(sum+target)%2) return 0;int n=nums.size();vector<vector<int>> dp(n+1,vector<int>(aim+1));dp[0][0]=1;for(int i = 1; i <= n; i++) for(int j = 0; j <= aim; j++){dp[i][j] = dp[i - 1][j];if(j >= nums[i - 1]) dp[i][j] += dp[i - 1][j - nums[i - 1]];}return dp[n][aim];}
};

04.最后一块石头的重量 II

题目链接:https://leetcode.cn/problems/last-stone-weight-ii/

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 xy,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

示例 1:

输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

示例 2:

输入:stones = [31,26,33,21,40]
输出:5

提示:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 100

思路

  1. 状态表示:
    • dp[i][j] 表示在前 i 个元素中选择,总和不超过 j 的情况下,这些元素的最大和。
  2. 状态转移方程:
    • 根据最后一个位置的元素,结合题目的要求,有两种策略:
      • 不选 stones[i]:此时是否能够凑成总和为 j,要看在前 i-1 个元素中选,能否凑成总和为 j。根据状态表示,此时 dp[i][j] = dp[i-1][j]
      • 选择 stones[i]:这种情况下是有前提条件的,此时的 stones[i] 应该是小于等于 j。因为如果这个元素都比要凑成的总和大,选择它就没有意义。那么是否能够凑成总和为 j,要看在前 i-1 个元素中选,能否凑成总和为 j - stones[i]。根据状态表示,此时 dp[i][j] = dp[i-1][j-stones[i]] + stones[i]
  3. 初始化:
    • 由于需要用到上一行的数据,可以先将第一行初始化。
    • 第一行表示「没有石头」,因此想凑成目标和 j 的最大和都是 0
  4. 填表顺序:
    • 根据状态转移方程,从上往下填写每一行,每一行的顺序是无所谓的。
  5. 返回值:
    • 根据状态表示,找到最接近 sum / 2 的最大和 dp[n][sum / 2]
    • 返回 sum - 2 * dp[n][sum / 2],因为我们要的是两堆石头的差。

代码

class Solution {
public:int lastStoneWeightII(vector<int>& stones) {int sum=0;for(int x:stones) sum+=x;int n=stones.size(),m=sum/2;vector<vector<int>> dp(n+1,vector<int>(m+1));for(int i=1;i<=n;i++)for(int j=0;j<=m;j++){dp[i][j]=dp[i-1][j];if(j>=stones[i-1]) dp[i][j]=max(dp[i][j],dp[i-1][j-stones[i-1]]+stones[i-1]);}return sum-2*dp[n][m];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/719745.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云计算 2月28号 (linux的磁盘分区)

一 存储管理 主要知识点: 基本分区、逻辑卷LVM、EXT3/4/XFS文件系统、RAID 初识硬盘 机械 HDD 固态 SSD SSD的优势 SSD采用电子存储介质进行数据存储和读取的一种技术&#xff0c;拥有极高的存储性能&#xff0c;被认为是存储技术发展的未来新星。 与传统硬盘相比&#xff0c…

深度伪造,让网络钓鱼更加难以辨别

网络钓鱼一直是安全领域的一个突出话题&#xff0c;尽管这类诈骗形式已经存在了几十年&#xff0c;依旧是欺诈攻击或渗透组织的最有效方法之一。诈骗分子基于社会工程原理&#xff0c;通过邮件、网站以及电话、短信和社交媒体&#xff0c;利用人性&#xff08;如冲动、不满、好…

嵌入式驱动学习第二周——Linux内核打印

前言 这篇博客来聊一聊Linux内核打印。 嵌入式驱动学习专栏将详细记录博主学习驱动的详细过程&#xff0c;未来预计四个月将高强度更新本专栏&#xff0c;喜欢的可以关注本博主并订阅本专栏&#xff0c;一起讨论一起学习。现在关注就是老粉啦&#xff01; 目录 前言1. dmesg指令…

【LeetCode:225. 用队列实现栈 + 栈 | 队列】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

水牛社软件是真的吗?

软件是真的&#xff0c;不过毕竟是为了赚钱或者获取资源而买的&#xff0c;所以大部分只关心能赚多少钱吧 说实话&#xff0c;我用了2年了&#xff0c;一些独立的项目还有群&#xff0c;有一月挣几千上万的&#xff0c;有一月赚几百的 软件是一个集合体&#xff0c;不是像很多…

代码随想录第二十七天 455.分发饼干 376.摆动序列 53.最大子序和 122.买卖股票的最佳时机II

LeetCode 455 分发饼干 题目描述 假设你是一位很棒的家长&#xff0c;想要给你的孩子们一些小饼干。但是&#xff0c;每个孩子最多只能给一块饼干。 对每个孩子 i&#xff0c;都有一个胃口值 g[i]&#xff0c;这是能让孩子们满足胃口的饼干的最小尺寸&#xff1b;并且每块饼…

2024全国护网行动HW行动招聘/收人!!!

2024全国护网行动HW行动招聘 溯蓉信创开始收人啦&#xff01;&#xff01;&#xff01;现在开始收录2024HW简历&#xff0c;感兴趣的小伙伴扫码二维码添加微信 我们签约后&#xff0c;入场即预付款3k&#xff0c;签约后我们会在HW之前对我们的人员进行HW培训&#xff0c;保证上…

Three.js--》探寻Cannon.js构建震撼的3D物理交互体验(一)

我们用three.js可以绘制出各种酷炫的画面&#xff0c;但是当我们想要一个更加真实的物理效果的话&#xff0c;这个时候我们就需要一个物理的库&#xff0c;接下来我们就讲解一下今天要学习的canon&#xff0c;它可以给我们提供一个更加真实的物理效果&#xff0c;像物体的张力、…

YOLOv8姿态估计实战:训练自己的数据集

课程链接&#xff1a;https://edu.csdn.net/course/detail/39355 YOLOv8 基于先前 YOLO 版本的成功&#xff0c;引入了新功能和改进&#xff0c;进一步提升性能和灵活性。YOLOv8 同时支持目标检测和姿态估计任务。 本课程以熊猫姿态估计为例&#xff0c;将手把手地教大家使用C…

MSCKF5讲:后端代码分析

MSCKF5讲&#xff1a;后端代码分析 文章目录 MSCKF5讲&#xff1a;后端代码分析1 初始化initialize()1.1 加载参数1.2 初始化IMU连续噪声协方差矩阵1.3 卡方检验1.4 接收与订阅话题createRosIO() 2 IMU静止初始化3 重置resetCallback()4 featureCallback4.1 IMU初始化判断4.2 I…

【文末送书】智能计算:原理与实践

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的停车位检测系统(Python+PySide6界面+训练代码)

摘要&#xff1a;开发停车位检测系统对于优化停车资源管理和提升用户体验至关重要。本篇博客详细介绍了如何利用深度学习构建一个停车位检测系统&#xff0c;并提供了完整的实现代码。该系统基于强大的YOLOv8算法&#xff0c;并结合了YOLOv7、YOLOv6、YOLOv5的性能对比&#xf…

HarmonyOS端云体化开发—创建端云一体化开发工程

云开发工程模板 DevEco Studio目前提供了两种云开发工程模板&#xff1a;通用云开发模板和商城模板。您可根据工程向导轻松创建端云一体化开发工程&#xff0c;并自动生成对应的代码和资源模板。在创建端云一体化开发工程前&#xff0c;请提前了解云开发工程模板的相关信息。 …

前端学习之HTML(第一天)

什么是HTML HTML是一种用来描述网页的一种语言&#xff0c;HTML不是一种编程语言&#xff0c;而是一种标记语言。 HTML标签 HTML 标签是由尖括号包围的关键词&#xff0c;比如 <html> HTML 标签通常是成对出现的&#xff0c;比如 <b> 和 </b> 标签对中的…

ROS 2基础概念#3:主题(Topic)| ROS 2学习笔记

在ROS&#xff08;Robot Operating System&#xff09;中&#xff0c;主题&#xff08;Topics&#xff09;是实现节点之间通信的主要机制之一。节点&#xff08;Node&#xff09;可以发布&#xff08;publish&#xff09;消息到话题&#xff0c;或者订阅&#xff08;subscribe&…

市场复盘总结 20240304

仅用于记录当天的市场情况&#xff0c;用于统计交易策略的适用情况&#xff0c;以便程序回测 短线核心&#xff1a;不参与任何级别的调整&#xff0c;采用龙空龙模式 一支股票 10%的时候可以操作&#xff0c; 90%的时间适合空仓等待 二进三&#xff1a; 进级率中 20% 最常用的…

格两例12345

osu/Lucky Roll gaming 周末osu有道题&#xff1a;lcg已知低位 def lcg(s, a, b, p):return (a * s b) % pp getPrime(floor(72.7)) a randrange(0, p) b randrange(0, p) seed randrange(0, p) print(f"{p }") print(f"{a }") print(f"{b …

幂等性设计

目录 前言 幂等性设计 幂等性设计处理流程 HTTP 幂等性 消息队列幂等性 基于kafka 前言 幂等性设计&#xff0c;就是说&#xff0c;一次和多次请求某一个资源应该具有同样的副作用。为什么我们要有幂等性操作&#xff1f;说白了&#xff0c;就两点&#xff1a;1、网络的…

LeetCode第125场双周赛个人题解

目录 100231. 超过阈值的最少操作数 I 原题链接 思路分析 AC代码 100232. 超过阈值的最少操作数 II 原题链接 思路分析 AC代码 100226. 在带权树网络中统计可连接服务器对数目 原题链接 思路分析 AC代码 100210. 最大节点价值之和 原题链接 思路分析 AC代码 10023…

大话C++之:对象内存模型

一般继承(无虚函数覆盖) 只有一个虚指针&#xff0c;指向一个虚表&#xff0c;虚函数按顺序从祖先节点开始插入到虚表上。字段按顺序从祖先节点开始插入到对象内存上 一般继承(有虚函数覆盖) 只有一个虚指针&#xff0c;指向一个虚表&#xff0c;虚函数按顺序从祖先节点开始&a…