曲线生成 | 图解Dubins曲线生成原理(附ROS C++/Python/Matlab仿真)

目录

  • 0 专栏介绍
  • 1 什么是Dubins曲线?
  • 2 Dubins曲线原理
    • 2.1 坐标变换
    • 2.2 单步运动公式
    • 2.3 曲线模式
  • 3 Dubins曲线生成算法
  • 4 仿真实现
    • 4.1 ROS C++实现
    • 4.2 Python实现
    • 4.3 Matlab实现

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


1 什么是Dubins曲线?

Dubins曲线是指由美国数学家 Lester Dubins 在20世纪50年代提出的一种特殊类型的最短路径曲线。这种曲线通常用于描述在给定转弯半径下的无人机、汽车或船只等载具的最短路径,其特点是起始点和终点处的切线方向和曲率都是已知的。

在这里插入图片描述

Dubins曲线包括直线段和最大转弯半径下的圆弧组成,通过合适的组合可以实现从一个姿态到另一个姿态的最短路径规划。这种曲线在航空、航海、自动驾驶等领域具有广泛的应用,能够有效地规划航行路径,减少能量消耗并提高效率。

2 Dubins曲线原理

2.1 坐标变换

如图所示,在全局坐标系 x O y xOy xOy中,设机器人起始位姿、终止位姿、最小转弯半径分别为 ( x s , y s , α ) \left( x_s,y_s,\alpha \right) (xs,ys,α) ( x g , y g , β ) \left( x_g,y_g,\beta \right) (xg,yg,β) R R R,则以 p s = ( x s , y s ) \boldsymbol{p}_s=\left( x_s,y_s \right) ps=(xs,ys)为新坐标系原点, p s \boldsymbol{p}_s ps指向 p g = ( x g , y g ) \boldsymbol{p}_g=\left( x_g,y_g \right) pg=(xg,yg)方向为 x ′ x' x轴,垂直方向为 y ′ y' y轴建立新坐标系 x ′ O ′ y ′ x'O'y' xOy

在这里插入图片描述

根据比例关系 d / D = r / R {{d}/{D}}={{r}/{R}} d/D=r/R,其中 D = ∥ p s − p g ∥ 2 D=\left\| \boldsymbol{p}_s-\boldsymbol{p}_g \right\| _2 D= pspg 2。为了便于后续推导,不妨归一化最小转弯半径,即令 r = 1 r=1 r=1。所以在坐标系 x ′ O ′ y ′ x'O'y' xOy中,通常取起点、终点间距为 d = D / R d={{D}/{R}} d=D/R,从而起始位姿、终止位姿、最小转弯半径分别转换为

s t a r t = [ 0 0 α − θ ] T , g o a l = [ d 0 β − θ ] T , r = 1 \mathrm{start}=\left[ \begin{matrix} 0& 0& \alpha -\theta\\\end{matrix} \right] ^T, \mathrm{goal}=\left[ \begin{matrix} d& 0& \beta -\theta\\\end{matrix} \right] ^T, r=1 start=[00αθ]T,goal=[d0βθ]T,r=1

其中 θ = a r c tan ⁡ ( ( y g − y s ) / ( x g − x s ) ) \theta =\mathrm{arc}\tan \left( {{\left( y_g-y_s \right)}/{\left( x_g-x_s \right)}} \right) θ=arctan((ygys)/(xgxs)),接下来的推导均基于转换坐标系 x ′ O ′ y ′ x'O'y' xOy

2.2 单步运动公式

对于直行运动,设沿直线行进距离为 l l l,则

[ x ∗ y ∗ ϕ ∗ ] T = [ x + l cos ⁡ ϕ y + l sin ⁡ ϕ ϕ ] T \left[ \begin{matrix} x^*& y^*& \phi ^*\\\end{matrix} \right] ^T=\left[ \begin{matrix} x+l\cos \phi& y+l\sin \phi& \phi\\\end{matrix} \right] ^T [xyϕ]T=[x+lcosϕy+lsinϕϕ]T

对于转弯运动,假设转向角为 ψ \psi ψ,则由弧长公式可得

l = ψ r = r = 1 ψ l=\psi r\xlongequal{r=1}\psi l=ψrr=1 ψ

因此设沿圆弧行进距离为 l l l,以左转为例,由几何关系易得

[ x ∗ y ∗ ϕ ∗ ] T = [ x + r sin ⁡ ( ϕ + ψ ) − r sin ⁡ ( ϕ ) y + r cos ⁡ ( ϕ + ψ ) + r cos ⁡ ( ϕ ) ϕ + ψ ] T \left[ \begin{matrix} x^*& y^*& \phi ^*\\\end{matrix} \right] ^T=\left[ \begin{matrix} x+r\sin \left( \phi +\psi \right) -r\sin \left( \phi \right)& y+r\cos \left( \phi +\psi \right) +r\cos \left( \phi \right)& \phi +\psi\\\end{matrix} \right] ^T [xyϕ]T=[x+rsin(ϕ+ψ)rsin(ϕ)y+rcos(ϕ+ψ)+rcos(ϕ)ϕ+ψ]T

代入 r = 1 r=1 r=1 ψ = l \psi=l ψ=l可得

[ x ∗ y ∗ ϕ ∗ ] T = [ x + sin ⁡ ( ϕ + l ) − sin ⁡ ( ϕ ) y + cos ⁡ ( ϕ + l ) + cos ⁡ ( ϕ ) ϕ + l ] T \left[ \begin{matrix} x^*& y^*& \phi ^*\\\end{matrix} \right] ^T=\left[ \begin{matrix} x+\sin \left( \phi +l \right) -\sin \left( \phi \right)& y+\cos \left( \phi +l \right) +\cos \left( \phi \right)& \phi +l\\\end{matrix} \right] ^T [xyϕ]T=[x+sin(ϕ+l)sin(ϕ)y+cos(ϕ+l)+cos(ϕ)ϕ+l]T

同理,对于右转而言,有

[ x ∗ y ∗ ϕ ∗ ] T = [ x − sin ⁡ ( ϕ − l ) + sin ⁡ ( ϕ ) y + cos ⁡ ( ϕ + l ) − cos ⁡ ( ϕ ) ϕ − l ] T \left[ \begin{matrix} x^*& y^*& \phi ^*\\\end{matrix} \right] ^T=\left[ \begin{matrix} x-\sin \left( \phi -l \right) +\sin \left( \phi \right)& y+\cos \left( \phi +l \right) -\cos \left( \phi \right)& \phi -l\\\end{matrix} \right] ^T [xyϕ]T=[xsin(ϕl)+sin(ϕ)y+cos(ϕ+l)cos(ϕ)ϕl]T

综上所述,可得单步运动映射

{ L l + ( x , y , ϕ ) = [ x + sin ⁡ ( ϕ + l ) − sin ⁡ ( ϕ ) y − cos ⁡ ( ϕ + l ) + cos ⁡ ( ϕ ) ϕ + l ] T R l + ( x , y , ϕ ) = [ x − sin ⁡ ( ϕ − l ) + sin ⁡ ( ϕ ) y + cos ⁡ ( ϕ − l ) − cos ⁡ ( ϕ ) ϕ − l ] T S l + ( x , y , ϕ ) = [ x + l cos ⁡ ϕ y + l sin ⁡ ϕ ϕ ] T \begin{cases} L_{l}^{+}\left( x,y,\phi \right) =\left[ \begin{matrix} x+\sin \left( \phi +l \right) -\sin \left( \phi \right)& y-\cos \left( \phi +l \right) +\cos \left( \phi \right)& \phi +l\\\end{matrix} \right] ^T\\ R_{l}^{+}\left( x,y,\phi \right) =\left[ \begin{matrix} x-\sin \left( \phi -l \right) +\sin \left( \phi \right)& y+\cos \left( \phi -l \right) -\cos \left( \phi \right)& \phi -l\\\end{matrix} \right] ^T\\ S_{l}^{+}\left( x,y,\phi \right) =\left[ \begin{matrix} x+l\cos \phi& y+l\sin \phi& \phi\\\end{matrix} \right] ^T\\\end{cases} Ll+(x,y,ϕ)=[x+sin(ϕ+l)sin(ϕ)ycos(ϕ+l)+cos(ϕ)ϕ+l]TRl+(x,y,ϕ)=[xsin(ϕl)+sin(ϕ)y+cos(ϕl)cos(ϕ)ϕl]TSl+(x,y,ϕ)=[x+lcosϕy+lsinϕϕ]T

2.3 曲线模式

Dubins曲线假设物体只能向前,通过组合左转、右转、直行可得六种运动模式

{ L S L , R S R , R S L , L S R , R L R , L R L } \left\{ LSL, RSR, RSL, LSR, RLR, LRL \right\} {LSL,RSR,RSL,LSR,RLR,LRL}

可以总结这六种运动模式的解析解为

在这里插入图片描述
在这里插入图片描述

3 Dubins曲线生成算法

Dubins曲线路径生成算法流程如表所示

在这里插入图片描述

4 仿真实现

4.1 ROS C++实现

核心代码如下所示

Points2d Dubins::generation(Pose2d start, Pose2d goal)
{Points2d path;double sx, sy, syaw;double gx, gy, gyaw;std::tie(sx, sy, syaw) = start;std::tie(gx, gy, gyaw) = goal;// coordinate transformationgx -= sx;gy -= sy;double theta = helper::mod2pi(atan2(gy, gx));double dist = hypot(gx, gy) * max_curv_;double alpha = helper::mod2pi(syaw - theta);double beta = helper::mod2pi(gyaw - theta);// select the best motionDubinsMode best_mode;double best_cost = DUBINS_MAX;DubinsLength length;DubinsLength best_length = { DUBINS_NONE, DUBINS_NONE, DUBINS_NONE };DubinsMode mode;for (const auto solver : dubins_solvers){(this->*solver)(alpha, beta, dist, length, mode);_update(length, mode, best_length, best_mode, best_cost);}if (best_cost == DUBINS_MAX)return path;// interpolation...// coordinate transformationEigen::AngleAxisd r_vec(theta, Eigen::Vector3d(0, 0, 1));Eigen::Matrix3d R = r_vec.toRotationMatrix();Eigen::MatrixXd P = Eigen::MatrixXd::Ones(3, path_x.size());for (size_t i = 0; i < path_x.size(); i++){P(0, i) = path_x[i];P(1, i) = path_y[i];}P = R * P;for (size_t i = 0; i < path_x.size(); i++)path.push_back({ P(0, i) + sx, P(1, i) + sy });return path;
}

4.2 Python实现

核心代码如下所示

def generation(self, start_pose: tuple, goal_pose: tuple):sx, sy, syaw = start_posegx, gy, gyaw = goal_pose# coordinate transformationgx, gy = gx - sx, gy - sytheta = self.mod2pi(math.atan2(gy, gx))dist = math.hypot(gx, gy) * self.max_curvalpha = self.mod2pi(syaw - theta)beta = self.mod2pi(gyaw - theta)# select the best motionplanners = [self.LSL, self.RSR, self.LSR, self.RSL, self.RLR, self.LRL]best_t, best_p, best_q, best_mode, best_cost = None, None, None, None, float("inf")for planner in planners:t, p, q, mode = planner(alpha, beta, dist)if t is None:continuecost = (abs(t) + abs(p) + abs(q))if best_cost > cost:best_t, best_p, best_q, best_mode, best_cost = t, p, q, mode, cost# interpolation...# coordinate transformationrot = Rot.from_euler('z', theta).as_matrix()[0:2, 0:2]converted_xy = rot @ np.stack([x_list, y_list])x_list = converted_xy[0, :] + sxy_list = converted_xy[1, :] + syyaw_list = [self.pi2pi(i_yaw + theta) for i_yaw in yaw_list]return best_cost, best_mode, x_list, y_list, yaw_list

在这里插入图片描述

4.3 Matlab实现

核心代码如下所示

function [x_list, y_list, yaw_list] = generation(start_pose, goal_pose, param)sx = start_pose(1); sy = start_pose(2); syaw = start_pose(3);gx = goal_pose(1); gy = goal_pose(2); gyaw = goal_pose(3);% coordinate transformationgx = gx - sx; gy = gy - sy;theta = mod2pi(atan2(gy, gx));dist = hypot(gx, gy) * param.max_curv;alpha = mod2pi(syaw - theta);beta = mod2pi(gyaw - theta);% select the best motionplanners = ["LSL", "RSR", "LSR", "RSL", "RLR", "LRL"];best_cost = inf;best_segs = [];best_mode = [];for i=1:length(planners)planner = str2func(planners(i));[segs, mode] = planner(alpha, beta, dist);if isempty(segs)continueendcost = (abs(segs(1)) + abs(segs(2)) + abs(segs(3)));if best_cost > costbest_segs = segs;best_mode = mode;best_cost = cost;endend% interpolation...% coordinate transformationrot = [cos(theta), -sin(theta); sin(theta), cos(theta)];converted_xy = rot * [x_list; y_list];x_list = converted_xy(1, :) + sx;y_list = converted_xy(2, :) + sy;for j=1:length(yaw_list)yaw_list(j) = pi2pi(yaw_list(j) + theta);end
end

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/718464.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c语言:转移表的实现

Hello,宝子们&#xff01;今天我们来模拟实现一下我们生活中的应用最频繁的工具&#xff1a;计算器&#xff0c;实现计算器有三种方式。 废话不多说&#xff0c;直接上代码&#xff0c;计算器的一般实现&#xff1a; #include <stdio.h> int add(int a, int b)//加法函数…

Foxmail快捷键设置问题

当快捷键设置错误时不会生效&#xff0c;原来的快捷键仍有效&#xff0c;即使禁用快捷键功能&#xff0c;原先快捷键仍有效。正确的快捷键&#xff1a; 1. 不能是空&#xff08;NULL&#xff09; 2. 应该设置按键值只有一个的键盘按钮。

力扣字符串篇

以下解题思路来自代码随想录以及官方题解。 文章目录 344.反转字符串541.反转字符串||151.反转字符串中的单词28.找出字符串中第一个匹配项的下标459.重复的字符串 344.反转字符串 编写一个函数&#xff0c;其作用是将输入的字符串反转过来。输入字符串以字符数组 s 的形式给…

怎样查询到pycharm终端中执行过的命令?

pycharm终端中记录了曾经运行过的命令&#xff0c;怎样才能查询到全部曾经运行过的命令呢&#xff1f; 怎样查询到pycharm终端中执行过的命令&#xff1f;

【动态规划专栏】

动态规划基础知识 概念 动态规划&#xff08;Dynamic Programming&#xff0c;DP&#xff09;&#xff1a;用来解决最优化问题的算法思想。 动态规划是分治思想的延伸&#xff0c;通俗一点来说就是大事化小&#xff0c;小事化无的艺术。 一般来说&#xff0c;…

【CSS】初学轻松学会使用Flex布局

目录 什么是Flex布局如何开始使用Flex布局Flex容器的属性Flex项目的属性举个例子 什么是Flex布局 Flex布局是一种基于盒子模型的布局方式&#xff0c;它让我们可以轻松地控制容器内的元素在主轴和交叉轴上的排列方式。通过设置不同的Flex属性&#xff0c;我们可以实现各种不同…

探索Hadoop的三种运行模式:单机模式、伪分布式模式和完全分布式模式

目录 前言一、 单机模式二、 伪分布式模式三、 完全分布式模式&#xff08;重点&#xff09;3.1 准备工作3.2 配置集群3.2.1 配置core-site.xml 文件3.2.2 配置hdfs-site.xml 文件3.2.3 配置yarn-site.xml 文件3.2.4 配置mapred-site.xml 文件 3.3 启动集群3.3.1 配置workers3.…

【百度】商业AIGC组_AIGC Java研发工程师(J70353)

北京市技术4人2024-02-28 工作职责&#xff1a; 负责商业AIGC平台方向的工程架构设计及研发&#xff0c;致力于为广告业务提供内容生成、内容知识化、内容多模态等中台化服务&#xff0c;并将内容能力打通广告检索系统&#xff0c;于广告的触发、创意、模型和机制等联动&#…

RK3568 android11 调试陀螺仪模块 MPU6500

一&#xff0c;MPU6500功能介绍 1.简介 MPU6500是一款由TDK生产的运动/惯性传感器&#xff0c;属于惯性测量设备&#xff08;IMU&#xff09;的一种。MPU6500集成了3轴加速度计、3轴陀螺仪和一个板载数字运动处理器&#xff08;DMP&#xff09;&#xff0c;能够提供6轴的运动…

Matlab|基于Logistic函数负荷需求响应

目录 1 基于Logistic函数的负荷转移率模型 2 程序示例 3 效果图 4 下载链接 负荷需求响应模型种类较多&#xff0c;有电价型和激励型等类型&#xff0c;本次和大家分享一个基于Logistic函数的负荷转移率模型&#xff0c;该模型属于电价型&#xff0c;由于该方法使用的较少&a…

mysql 性能调优参数配置文件

########################################################################### ## my.cnf for MySQL 8.0.x # ## 本配置参考 https://imysql.com/my-cnf-wizard.html # ## 注意&#xff1a; …

python爬虫之app爬取-charles的使用

专栏系列:http://t.csdnimg.cn/WfCSx 前言 前面介绍的都是爬取 Web 网页的内容。随着移动互联网的发展,越来越多的企业并没有提供 Web 网页端的服务,而是直接开发了 App,更多更全的信息都是通过 App 来展示的。那么针对 App 我们可以爬取吗?当然可以。 App 的爬取相比 …

FM AM WM DAB是啥

技术描述频率范围优点缺点调频调制&#xff08;FM&#xff09;在FM广播中&#xff0c;音频信号的频率被调制以匹配载波信号的变化&#xff0c;而载波信号的振幅保持不变。FM广播通常具有较高的音质&#xff0c;并且在一定范围内提供清晰的音频。88 MHz 至 108 MHz- 高音质 - 清…

[linux] matplotlib plt画training dynamics指标曲线时,标记每个点的值

plt画折线图时&#xff0c;plt.annotate标记折线图的点的数值。 def plot_ret(*ret_dicts):plt.figure(figsize(10, 5))for ret_dict in ret_dicts:print(ret_dict["iters"])plt.plot([iter*4/1000 for iter in ret_dict["iters"]], ret_dict["ret&q…

亿道信息发布两款升级款全加固笔记本电脑

2022年5月19日&#xff0c;加固手持终端。加固平板电脑、加固笔记本电脑专业设计商和制造商&#xff0c;以及加固型移动计算机软硬件整体定制解决方案提供商亿道信息&#xff0c;宣布对其两款广受欢迎的加固笔记本电脑产品EM-X14U和EM-X15U进行重大升级。新发布的两款升级款全加…

下载element-ui 资源,图标 element-icons.woff,element-icons.ttf 无法解码文件字体

css下载地址&#xff1a;https://unpkg.com/element-ui2.15.14/lib/theme-chalk/index.css js下载地址&#xff1a;https://unpkg.com/element-ui2.15.14/lib/index.js 图标及文字文件下载地址&#xff1a; element-icons.woff:&#xff1a; ​ https://unpkg.com/element-…

《TCP/IP详解 卷一》第10章 UDP 和 IP 分片

目录 10.1 引言 10.2 UDP 头部 10.3 UDP校验和 10.4 例子 10.5 UDP 和 IPv6 10.6 UDP-Lite 10.7 IP分片 10.7.1 例子&#xff1a;IPV4 UDP分片 10.7.2 重组超时 10.8 采用UDP的路径MTU发现 10.9 IP分片和ARP/ND之间的交互 10.10 最大UDP数据报长度 10.11 UDP服务器…

【java、微服务、nacos】nacos学习笔记

Nacos服务分级存储模型 ① 一级是服务&#xff0c;例如userservice ②二级是集群&#xff0c;例如杭州或上海 ③ 三级是实例&#xff0c;例如杭州机房的某台部署了userservice的服务器 配置实例集群属性 改变服务的yml文件 spring:cloud:nacos:discovery:cluster-name: H…

Docker将本地的镜像上传到私有仓库

使用register镜像创建私有仓库 [rootopenEuler-node1 ~]# docker run --restartalways -d -p 5000:5000 -v /opt/data/regostry:/var/lib/registry registry:2[rootopenEuler-node1 ~]# docker images REPOSITORY TAG IMAGE…

Day 60 | 动态规划 647. 回文子串 、 516.最长回文子序列 、动态规划总结篇

647. 回文子串 题目 文章讲解 视频讲解 class Solution {public int countSubstrings(String s) {char[] chars s.toCharArray();int len chars.length;boolean[][] dp new boolean[len][len];int result 0;for (int i len - 1; i > 0; i--) {for (int j i; j < l…