如何提升计算机性能

04 穿越功耗墙,我们该从哪些方面提升“性能”?

上一讲,在讲 CPU 的性能时,我们提到了这样一个公式:

程序的 CPU 执行时间 = 指令数×CPI×Clock Cycle Time

这么来看,如果要提升计算机的性能,我们可以从指令数、CPI 以及 CPU 主频这三个地方入手。要搞定指令数或者 CPI,乍一看都不太容易。于是,研发 CPU 的硬件工程师们,从 80 年代开始,就挑上了 CPU 这个“软柿子”。在 CPU 上多放一点晶体管,不断提升 CPU 的时钟频率,这样就能让 CPU 变得更快,程序的执行时间就会缩短。

于是,从 1978 年 Intel 发布的 8086 CPU 开始,计算机的主频从 5MHz 开始,不断提升。1980 年代中期的 80386 能够跑到 40MHz,1989 年的 486 能够跑到 100MHz,直到 2000 年的奔腾 4 处理器,主频已经到达了 1.4GHz。而消费者也在这 20 年里养成了“看主频”买电脑的习惯。当时已经基本垄断了桌面 CPU 市场的 Intel 更是夸下了海口,表示奔腾 4 所使用的 CPU 结构可以做到 10GHz,颇有一点“大力出奇迹”的意思。

功耗:CPU 的“人体极限”

然而,计算机科学界从来不相信“大力出奇迹”。奔腾 4 的 CPU 主频从来没有达到过 10GHz,最终它的主频上限定格在 3.8GHz。这还不是最糟的,更糟糕的事情是,大家发现,奔腾 4 的主频虽然高,但是它的实际性能却配不上同样的主频。想要用在笔记本上的奔腾 4 2.4GHz 处理器,其性能只和基于奔腾 3 架构的奔腾 M 1.6GHz 处理器差不多。

于是,这一次的“大力出悲剧”,不仅让 Intel 的对手 AMD 获得了喘息之机,更是代表着“主频时代”的终结。后面几代 Intel CPU 主频不但没有上升,反而下降了。到如今,2019 年的最高配置 Intel i9 CPU,主频也只不过是 5GHz 而已。相较于 1978 年到 2000 年,这 20 年里 300 倍的主频提升,从 2000 年到现在的这 19 年,CPU 的主频大概提高了 3 倍。

img
img

CPU 的主频变化,在奔腾 4 时代进入了瓶颈期,图片来源

奔腾 4 的主频为什么没能超过 3.8GHz 的障碍呢?答案就是功耗问题。什么是功耗问题呢?我们先看一个直观的例子。

一个 3.8GHz 的奔腾 4 处理器,满载功率是 130 瓦。这个 130 瓦是什么概念呢?机场允许带上飞机的充电宝的容量上限是 100 瓦时。如果我们把这个 CPU 安在手机里面,不考虑屏幕内存之类的耗电,这个 CPU 满载运行 45 分钟,充电宝里面就没电了。而 iPhone X 使用 ARM 架构的 CPU,功率则只有 4.5 瓦左右。

我们的 CPU,一般都被叫作超大规模集成电路(Very-Large-Scale Integration,VLSI)。这些电路,实际上都是一个个晶体管组合而成的。CPU 在计算,其实就是让晶体管里面的“开关”不断地去“打开”和“关闭”,来组合完成各种运算和功能。

想要计算得快,一方面,我们要在 CPU 里,同样的面积里面,多放一些晶体管,也就是增加密度;另一方面,我们要让晶体管“打开”和“关闭”得更快一点,也就是提升主频。而这两者,都会增加功耗,带来耗电和散热的问题。

这么说可能还是有点抽象,我还是给你举一个例子。你可以把一个计算机 CPU 想象成一个巨大的工厂,里面有很多工人,相当于 CPU 上面的晶体管,互相之间协同工作。

为了工作得快一点,我们要在工厂里多塞一点人。你可能会问,为什么不把工厂造得大一点呢?这是因为,人和人之间如果离得远了,互相之间走过去需要花的时间就会变长,这也会导致性能下降。这就好像如果 CPU 的面积大,晶体管之间的距离变大,电信号传输的时间就会变长,运算速度自然就慢了。

除了多塞一点人,我们还希望每个人的动作都快一点,这样同样的时间里就可以多干一点活儿了。这就相当于提升 CPU 主频,但是动作快,每个人就要出汗散热。要是太热了,对工厂里面的人来说会中暑生病,对 CPU 来说就会崩溃出错。

我们会在 CPU 上面抹硅脂、装风扇,乃至用上水冷或者其他更好的散热设备,就好像在工厂里面装风扇、空调,发冷饮一样。但是同样的空间下,装上风扇空调能够带来的散热效果也是有极限的。

因此,在 CPU 里面,能够放下的晶体管数量和晶体管的“开关”频率也都是有限的。一个 CPU 的功率,可以用这样一个公式来表示:

功耗 ~= 1⁄2 ×负载电容×电压的平方×开关频率×晶体管数量

那么,为了要提升性能,我们需要不断地增加晶体管数量。同样的面积下,我们想要多放一点晶体管,就要把晶体管造得小一点。这个就是平时我们所说的提升“制程”。从 28nm 到 7nm,相当于晶体管本身变成了原来的 1⁄4 大小。这个就相当于我们在工厂里,同样的活儿,我们要找瘦小一点的工人,这样一个工厂里面就可以多一些人。我们还要提升主频,让开关的频率变快,也就是要找手脚更快的工人。

img
img

但是,功耗增加太多,就会导致 CPU 散热跟不上,这时,我们就需要降低电压。这里有一点非常关键,在整个功耗的公式里面,功耗和电压的平方是成正比的。这意味着电压下降到原来的 1/5,整个的功耗会变成原来的 1/25。

事实上,从 5MHz 主频的 8086 到 5GHz 主频的 Intel i9,CPU 的电压已经从 5V 左右下降到了 1V 左右。这也是为什么我们 CPU 的主频提升了 1000 倍,但是功耗只增长了 40 倍。比如说,我写这篇文章用的是 Surface Go,在这样的轻薄笔记本上,微软就是选择了把电压下降到 0.25V 的低电压 CPU,使得笔记本能有更长的续航时间。

并行优化,理解阿姆达尔定律

虽然制程的优化和电压的下降,在过去的 20 年里,让我们的 CPU 性能有所提升。但是从上世纪九十年代到本世纪初,软件工程师们所用的“面向摩尔定律编程”的套路越来越用不下去了。“写程序不考虑性能,等明年 CPU 性能提升一倍,到时候性能自然就不成问题了”,这种想法已经不可行了。

于是,从奔腾 4 开始,Intel 意识到通过提升主频比较“难”去实现性能提升,边开始推出 Core Duo 这样的多核 CPU,通过提升“吞吐率”而不是“响应时间”,来达到目的。

提升响应时间,就好比提升你用的交通工具的速度,比如原本你是开汽车,现在变成了火车乃至飞机。本来开车从上海到北京要 20 个小时,换成飞机就只要 2 个小时了,但是,在此之上,再想要提升速度就不太容易了。我们的 CPU 在奔腾 4 的年代,就好比已经到了飞机这个速度极限。

那你可能要问了,接下来该怎么办呢?相比于给飞机提速,工程师们又想到了新的办法,可以一次同时开 2 架、4 架乃至 8 架飞机,这就好像我们现在用的 2 核、4 核,乃至 8 核的 CPU。

虽然从上海到北京的时间没有变,但是一次飞 8 架飞机能够运的东西自然就变多了,也就是所谓的“吞吐率”变大了。所以,不管你有没有需要,现在 CPU 的性能就是提升了 2 倍乃至 8 倍、16 倍。这也是一个最常见的提升性能的方式,通过并行提高性能

这个思想在很多地方都可以使用。举个例子,我们做机器学习程序的时候,需要计算向量的点积,比如向量 W=[W0,W1,W2,…,W15]W=[W0,W1,W2,…,W15] 和向量 X=[X0,X1,X2,…,X15]X=[X0,X1,X2,…,X15],W⋅X=W0∗X0+W1∗X1+W·X=W0∗X0+W1∗X1+ W2∗X2+…+W15∗X15W2∗X2+…+W15∗X15。这些式子由 16 个乘法和 1 个连加组成。如果你自己一个人用笔来算的话,需要一步一步算 16 次乘法和 15 次加法。如果这个时候我们把这个人物分配给 4 个人,同时去算 W0~W3W0~W3, W4~W7W4~W7, W8~W11W8~W11, W12~W15W12~W15 这样四个部分的结果,再由一个人进行汇总,需要的时间就会缩短。

img
img

但是,并不是所有问题,都可以通过并行提高性能来解决。如果想要使用这种思想,需要满足这样几个条件。

第一,需要进行的计算,本身可以分解成几个可以并行的任务。好比上面的乘法和加法计算,几个人可以同时进行,不会影响最后的结果。

第二,需要能够分解好问题,并确保几个人的结果能够汇总到一起。

第三,在“汇总”这个阶段,是没有办法并行进行的,还是得顺序执行,一步一步来。

这就引出了我们在进行性能优化中,常常用到的一个经验定律,阿姆达尔定律(Amdahl’s Law)。这个定律说的就是,对于一个程序进行优化之后,处理器并行运算之后效率提升的情况。具体可以用这样一个公式来表示:

优化后的执行时间 = 受优化影响的执行时间 / 加速倍数 + 不受影响的执行时间

在刚刚的向量点积例子里,4 个人同时计算向量的一小段点积,就是通过并行提高了这部分的计算性能。但是,这 4 个人的计算结果,最终还是要在一个人那里进行汇总相加。这部分汇总相加的时间,是不能通过并行来优化的,也就是上面的公式里面不受影响的执行时间这一部分。

比如上面的各个向量的一小段的点积,需要 100ns,加法需要 20ns,总共需要 120ns。这里通过并行 4 个 CPU 有了 4 倍的加速度。那么最终优化后,就有了 100⁄4+20=45ns。即使我们增加更多的并行度来提供加速倍数,比如有 100 个 CPU,整个时间也需要 100⁄100+20=21ns。

img
img

总结延伸

我们可以看到,无论是简单地通过提升主频,还是增加更多的 CPU 核心数量,通过并行来提升性能,都会遇到相应的瓶颈。仅仅简单地通过“堆硬件”的方式,在今天已经不能很好地满足我们对于程序性能的期望了。于是,工程师们需要从其他方面开始下功夫了。

在“摩尔定律”和“并行计算”之外,在整个计算机组成层面,还有这样几个原则性的性能提升方法。

1.加速大概率事件。最典型的就是,过去几年流行的深度学习,整个计算过程中,99% 都是向量和矩阵计算,于是,工程师们通过用 GPU 替代 CPU,大幅度提升了深度学习的模型训练过程。本来一个 CPU 需要跑几小时甚至几天的程序,GPU 只需要几分钟就好了。Google 更是不满足于 GPU 的性能,进一步地推出了 TPU。后面的文章,我也会为你讲解 GPU 和 TPU 的基本构造和原理。

2.通过流水线提高性能。现代的工厂里的生产线叫“流水线”。我们可以把装配 iPhone 这样的任务拆分成一个个细分的任务,让每个人都只需要处理一道工序,最大化整个工厂的生产效率。类似的,我们的 CPU 其实就是一个“运算工厂”。我们把 CPU 指令执行的过程进行拆分,细化运行,也是现代 CPU 在主频没有办法提升那么多的情况下,性能仍然可以得到提升的重要原因之一。我们在后面也会讲到,现代 CPU 里是如何通过流水线来提升性能的,以及反面的,过长的流水线会带来什么新的功耗和效率上的负面影响。

3.通过预测提高性能。通过预先猜测下一步该干什么,而不是等上一步运行的结果,提前进行运算,也是让程序跑得更快一点的办法。典型的例子就是在一个循环访问数组的时候,凭经验,你也会猜到下一步我们会访问数组的下一项。后面要讲的“分支和冒险”、“局部性原理”这些 CPU 和存储系统设计方法,其实都是在利用我们对于未来的“预测”,提前进行相应的操作,来提升我们的程序性能。

好了,到这里,我们讲完了计算机组成原理这门课的“前情提要”。一方面,整个组成乃至体系结构,都是基于冯·诺依曼架构组成的软硬件一体的解决方案。另一方面,你需要明白的就是,这里面的方方面面的设计和考虑,除了体系结构层面的抽象和通用性之外,核心需要考虑的是“性能”问题。

接下来,我们就要开始深入组成原理,从一个程序的运行讲起,开始我们的“机器指令”之旅。

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/717648.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于ZYNQ的PCIE高速数据采集卡的设计(一)

作为信息处理的第一步,数据采集的作用越来越重要。目前,数据采集已经在航 空、民用、军事、医疗等领域得到广泛应用。随着相关技术的不断发展,信号频率越 来高,带宽越来越大,使得数据采集技术逐渐向高速大数据的方向…

幻兽帕鲁专用服务器搭建之Linux部署配置教程

大家好我是飞飞,上一期我分享了Windows系统的幻兽帕鲁服务器搭建教程。因为幻兽帕鲁这游戏对服务器的配置有一定的要求,很多小伙伴就寻思用Linux系统搭建占用会不会小一点?有计算机基础的小伙伴都知道Linux系统和Windows系统相比,…

【Linux】实时查看服务器信息

查看服务器CPU使用率 使用命令mpstat 1。这里的1表示每隔1秒更新一次CPU使用率。如果系统未安装mpstat,可以通过安装sysstat包来获取它。 在基于Debian的系统(如Ubuntu)上,使用命令: sudo apt-get update sudo apt-…

考研复试类比社团招新,无所谓“公平”,导师选谁都是他的权力

这篇文章是抖音和b站上上传的同名视频的原文稿件,感兴趣的csdn用户可以关注我的抖音和b站账号(GeekPower极客力量)。同时这篇文章也为视频观众提供方便,可以更加冷静地分析和思考。文章同时在知乎发表。 我考研一战的时候计算机考…

【详识JAVA语言】面向对象程序三大特性之一:封装

封装的概念 面向对象程序三大特性:封装、继承、多态。而类和对象阶段,主要研究的就是封装特性。何为封装呢?简单来说 就是套壳屏蔽细节。 比如:对于电脑这样一个复杂的设备,提供给用户的就只是:开关机、通…

管理系统提升:列表页构成要素,拒绝千篇一律

大家伙,我是大千UI工场,专注UI知识案例分享和接单,本期带来B端系统列表页的分享,欢迎大家关注、互动交流。 一、什么是列表页 管理系统列表页是指管理系统中用于展示和管理数据的页面,通常以表格或列表的形式呈现。列…

23端口登录的Telnet命令+传输协议FTP命令

一、23端口登录的Telnet命令 Telnet是传输控制协议/互联网协议(TCP/IP)网络(如Internet)的登录和仿真程序,主要用于Internet会话。基本功能是允许用户登录进入远程主机程序。 常用的Telnet命令 Telnet命令的格式为&…

有人吐槽:可视化大屏面向领导的设计,真相是这样吗?

某些老铁的态度很极端,看到可视化大屏页面就一口断定,除了讨好领导之外,屁用没有。真相是这样吗?贝格前端工场尝试给老铁们分析下。 一、可视化大屏确实要面向领导,但不是讨好领导 可视化大屏的设计需要考虑领导和管理…

整理的一些脑模板及节点的名称

整理的一些脑模板及节点的名称 前言模板简介AAL90模板HOA112 模板 前言 自己看论文找的,因为有些数据集网站的确有点难找到模板的名称等等。所以主要是看一些论文,因为有文献,所以更有保障一些。当然也有一些在数据网站上比较容易找到所以一…

小兴教你做平衡小车-stm32程序开发(按键扫描)

文章目录 1 单片机最小系统板按键原理图介绍2 库函数程序设计3 寄存器程序设计4 效果展示 1 单片机最小系统板按键原理图介绍 从图中看出单片机的PB12引脚接到了按键上。 根据按键的原理图,可以分析得到,如果不按下按键的时候,引脚输入的是…

适配华为“纯血鸿蒙”,抖音开始招聘相关人才

目前,字节跳动上线了“大前端高级开发工程师”一职,开始招聘鸿蒙人才。 根据职位描述,该岗位负责抖音大前端基础工程与架构设计,以及抖音大前端基础设施建设。 该职位需要有前端工程化经验,熟悉JavaScript/TypeScrip…

斐波那契数列模型---使用最小花费爬楼梯

746. 使用最小花费爬楼梯 - 力扣(LeetCode) 1、状态表示: 题目意思即:cost[i]代表从第i层向上爬1阶或者2阶,需要花费多少力气。如cost[0],代表从第0阶爬到第1阶或者第2阶需要cost[0]的力气。 一共有cost.…

C++_数据类型_字符串型

作用 用于表示一串字符 两种风格 C风格字符串&#xff1a;char 变量名[] "字符串值” 示例 注意 C风格的字符串要用双括号括起来 C风格字符串&#xff1a;string 变量名 "字符串值” 注意 用C风格字符串的时候&#xff0c;要包含这个头文件#include <st…

【比较mybatis、lazy、sqltoy、lambda、操作数据 】操作批量新增、分页查询【一】

orm框架使用Lambda性能比较 环境&#xff1a; idea jdk17 spring boot 3.0.7 mysql 8.0测试条件常规对象 orm 框架是否支持xml是否支持 Lambda对比版本mybatis☑️☑️3.5.4sqltoy☑️☑️5.2.98lazy✖️☑️1.2.3-JDK17 数据库表(含有唯一性索引s_u) CREATE TABLE sys_u…

吴恩达机器学习-可选实验室-梯度下降-Gradient Descent for Linear Regression

文章目录 目标工具问题陈述计算损失梯度下降总结执行梯度下降梯度下降法成本与梯度下降的迭代预测绘制祝贺 目标 在本实验中&#xff0c;你将:使用梯度下降自动化优化w和b的过程 工具 在本实验中&#xff0c;我们将使用: NumPy&#xff0c;一个流行的科学计算库Matplotlib&…

【茶话数据结构】查找最短路径——Dijkstra算法详解(保姆式详细图解,步步紧逼,保你学会)

&#x1f4af; 博客内容&#xff1a;【茶话数据结构】查找最短路径——Dijkstra算法详解 &#x1f600; 作  者&#xff1a;陈大大陈 &#x1f989;所属专栏&#xff1a;数据结构笔记 &#x1f680; 个人简介&#xff1a;一个正在努力学技术的准前端&#xff0c;专注基础和实…

【python】遵守 robots.txt 规则的数据爬虫程序

程序1 编写一个遵守 robots.txt 规则的数据爬虫程序涉及到多个步骤&#xff0c;包括请求网页、解析 robots.txt 文件、扫描网页内容、存储数据以及处理异常。由于编程语言众多&#xff0c;且每种语言编写爬虫程序的方式可能有所不同&#xff0c;以下将使用 Python 语言举例&am…

【论文】A Survey of Monte Carlo Tree Search Methods阅读笔记

本文主要是将有关蒙特卡洛树搜索的文献&#xff08;2011年之前&#xff09;进行归纳&#xff0c;概述了核心算法的推导&#xff0c;给出了已经提出的许多变化和改进的一些结构&#xff0c;并总结了MCTS方法已经应用于的博弈和其他领域的结果。 蒙特卡洛树搜索是一种通过在决策…

Redis在中国火爆,为何MongoDB更受欢迎国外?

一、概念 Redis Redis&#xff08;Remote Dictionary Server&#xff09;是一个使用ANSI C编写的开源、支持网络、基于内存、分布式、可选持久性的键值对存储数据库。Redis是由Salvatore Sanfilippo于2009年启动开发的&#xff0c;首个版本于同年5月发布。 MongoDB MongoDB…