YOLOv9独家原创改进|使用可改变核卷积AKConv改进RepNCSPELAN4


专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!!


一、改进点介绍

        AKConv是一种具有任意数量的参数和任意采样形状的可变卷积核,对不规则特征有更好的提取效果。

        RepNCSPELAN4是YOLOv9中的特征提取模块,类似YOLOv5和v8中的C2f与C3模块。


二、RepNCSPELAN4-AKConv模块详解

 2.1 模块简介

        RepNCSPELAN4-AKConv的主要思想:  使用AKConv替换RepNCSPELAN4中的Conv模块。


三、 RepNCSPELAN4-AKConv模块使用教程

3.1 RepNCSPELAN4-AKConv模块的代码

class RepNCSP_AKConv(RepNCSP):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__(c1, c2, n, shortcut, g, e)c_ = int(c2 * e)  # hidden channelsself.cv1 = AKConv(c1, c_)self.cv2 = AKConv(c1, c_)self.cv3 = AKConv(2 * c_, c2)  # optional act=FReLU(c2)self.m = nn.Sequential(*(RepNBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))class RepNCSPELAN4AKConv1(RepNCSPELAN4):def __init__(self, c1, c2, c3, c4, c5=1):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__(c1, c2, c3, c4, c5)self.cv1 = AKConv(c1, c3)self.cv2 = nn.Sequential(RepNCSP_AKConv(c3//2, c4, c5), Conv(c4, c4, 3, 1))self.cv3 = nn.Sequential(RepNCSP_AKConv(c4, c4, c5), Conv(c4, c4, 3, 1))self.cv4 = AKConv(c3+(2*c4), c2)from einops import rearrangeclass AKConv(nn.Module):def __init__(self, inc, outc, num_param=5, stride=1):"""初始化参数说明:inc: 输入通道数, outc: 输出通道数, num_param:(卷积核)参数量, stride = 1:卷积步长默认为1, bias = None:默认无偏执"""super(AKConv, self).__init__()self.num_param = num_paramself.stride = strideself.conv = Conv(inc, outc, k=(num_param, 1), s=(num_param, 1) )self.p_conv = nn.Conv2d(inc, 2 * num_param, kernel_size=3, padding=1, stride=stride)nn.init.constant_(self.p_conv.weight, 0)self.p_conv.register_full_backward_hook(self._set_lr)@staticmethoddef _set_lr(module, grad_input, grad_output):grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))def forward(self, x):# N is num_param.offset = self.p_conv(x)dtype = offset.data.type()N = offset.size(1) // 2# (b, 2N, h, w)p = self._get_p(offset, dtype)# (b, h, w, 2N)p = p.contiguous().permute(0, 2, 3, 1)q_lt = p.detach().floor()q_rb = q_lt + 1q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2) - 1), torch.clamp(q_lt[..., N:], 0, x.size(3) - 1)],dim=-1).long()q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2) - 1), torch.clamp(q_rb[..., N:], 0, x.size(3) - 1)],dim=-1).long()q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)# clip pp = torch.cat([torch.clamp(p[..., :N], 0, x.size(2) - 1), torch.clamp(p[..., N:], 0, x.size(3) - 1)], dim=-1)# bilinear kernel (b, h, w, N)g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))# resampling the features based on the modified coordinates.x_q_lt = self._get_x_q(x, q_lt, N)x_q_rb = self._get_x_q(x, q_rb, N)x_q_lb = self._get_x_q(x, q_lb, N)x_q_rt = self._get_x_q(x, q_rt, N)# bilinearx_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \g_rb.unsqueeze(dim=1) * x_q_rb + \g_lb.unsqueeze(dim=1) * x_q_lb + \g_rt.unsqueeze(dim=1) * x_q_rtx_offset = self._reshape_x_offset(x_offset, self.num_param)out = self.conv(x_offset)return out# generating the inital sampled shapes for the AKConv with different sizes.def _get_p_n(self, N, dtype):base_int = round(math.sqrt(self.num_param))row_number = self.num_param // base_intmod_number = self.num_param % base_intp_n_x, p_n_y = torch.meshgrid(torch.arange(0, row_number),torch.arange(0, base_int), indexing='xy')p_n_x = torch.flatten(p_n_x)p_n_y = torch.flatten(p_n_y)if mod_number > 0:mod_p_n_x, mod_p_n_y = torch.meshgrid(torch.arange(row_number, row_number + 1),torch.arange(0, mod_number), indexing='xy')mod_p_n_x = torch.flatten(mod_p_n_x)mod_p_n_y = torch.flatten(mod_p_n_y)p_n_x, p_n_y = torch.cat((p_n_x, mod_p_n_x)), torch.cat((p_n_y, mod_p_n_y))p_n = torch.cat([p_n_x, p_n_y], 0)p_n = p_n.view(1, 2 * N, 1, 1).type(dtype)return p_n# no zero-paddingdef _get_p_0(self, h, w, N, dtype):p_0_x, p_0_y = torch.meshgrid(torch.arange(0, h * self.stride, self.stride),torch.arange(0, w * self.stride, self.stride), indexing='xy')p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)return p_0def _get_p(self, offset, dtype):N, h, w = offset.size(1) // 2, offset.size(2), offset.size(3)# (1, 2N, 1, 1)p_n = self._get_p_n(N, dtype)# (1, 2N, h, w)p_0 = self._get_p_0(h, w, N, dtype)p = p_0 + p_n + offsetreturn pdef _get_x_q(self, x, q, N):b, h, w, _ = q.size()padded_w = x.size(3)c = x.size(1)# (b, c, h*w)x = x.contiguous().view(b, c, -1)# (b, h, w, N)index = q[..., :N] * padded_w + q[..., N:]  # offset_x*w + offset_y# (b, c, h*w*N)index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)return x_offset#  Stacking resampled features in the row direction.@staticmethoddef _reshape_x_offset(x_offset, num_param):b, c, h, w, n = x_offset.size()x_offset = rearrange(x_offset, 'b c h w n -> b c (h n) w')return x_offset

3.2 在YOlO v9中的添加教程

阅读YOLOv9添加模块教程或使用下文操作

        1. 将YOLOv9工程中models下common.py文件中的最下行(否则可能因类继承报错)增加模块的代码。

         2. 将YOLOv9工程中models下yolo.py文件中的第681行(可能因版本变化而变化)增加以下代码。

            RepNCSPELAN4, SPPELAN, RepNCSPELAN4AKConv1}:

3.3 运行配置文件

# YOLOv9
# Powered bu https://blog.csdn.net/StopAndGoyyy# parameters
nc: 80  # number of classes
#depth_multiple: 0.33  # model depth multiple
depth_multiple: 1  # model depth multiple
#width_multiple: 0.25  # layer channel multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4AKConv1, [256, 128, 64, 1]],  # 3# avg-conv down[-1, 1, ADown, [256]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# avg-conv down[-1, 1, ADown, [512]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# avg-conv down[-1, 1, ADown, [512]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 23[7, 1, CBLinear, [[256, 512]]], # 24[9, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28# avg-conv down fuse[-1, 1, ADown, [256]],  # 29-P3/8[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31# avg-conv down fuse[-1, 1, ADown, [512]],  # 32-P4/16[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34# avg-conv down fuse[-1, 1, ADown, [512]],  # 35-P5/32[[25, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37# detection head# detect[[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

3.4 训练过程


欢迎关注!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/716612.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023年12月CCF-GESP编程能力等级认证Scratch图形化编程四级真题解析

一、单选题(共15题,共30分) 第1题 现代计算机是指电子计算机,它所基于的是( )体系结构。 A:艾伦图灵 B:冯诺依曼 C:阿塔纳索夫 D:埃克特-莫克利 答案:B 第2题 默认小猫角色,执行下列程序,以下说法正确的是? ( ) A:舞台上会出现无数个小猫 B:舞台只会出现…

java spring 02. AbstractApplicationContext

spring创建对象的顺序,先创建beanfactory,再会把xml文件读取到spring。 public ClassPathXmlApplicationContext(String[] configLocations, boolean refresh, Nullable ApplicationContext parent)throws BeansException {//调用父类的构造方法super(p…

Redis常用指令,jedis与持久化

1.redis常用指令 第一个是key的常用指令,第二个是数据库的常用指令 前面的那些指令都是针对某一个数据类型操作的,现在的都是对所有的操作的 1.key常用指令 key应该设计哪些操作 key是一个字符串,通过key获取redis中保存的数据 对于key…

flink重温笔记(九):Flink 高级 API 开发——flink 四大基石之WaterMark(Time为核心)

Flink学习笔记 前言:今天是学习 flink 的第 9 天啦!学习了 flink 四大基石之 Time的应用—> Watermark(水印,也称水位线),主要是解决数据由于网络延迟问题,出现数据乱序或者迟到数据现象&…

通过大语言模型理解运维故障:评估和总结

张圣林 南开大学软件学院副教授、博士生导师 第六届CCF国际AIOps挑战赛程序委员会主席 在ATC、WWW、VLDB、KDD、SIGMETRICS等国际会议和JSAC、TC、TSC等国际期刊发表高水平论文50余篇。主持国家自然科学基金项目2项,横向项目13项(与华为、字节跳动、腾讯…

Sqli-labs靶场第20关详解[Sqli-labs-less-20]自动化注入-SQLmap工具注入

Sqli-labs-Less-20 通过测试发现,在登录界面没有注入点,通过已知账号密码admin,admin进行登录发现: 登录后会有记录 Cookie 值 设想如果在Cookie尝试加上注入语句(报错注入),测试是否会执行…

C++STL之vector

vector 1. vector介绍 vector文档vector其实就是一个顺序表,它表示可变大小数组的序列容器。像数组一样,可以使用下标[] 来访问vector的元素,和数组一样高效;甚至,它的大小是可以动态改变的,其大小由容器自…

软考55-上午题-【数据库】-数据库设计步骤1

一、数据库设计的步骤 新奥尔良法,四个主要阶段: 1、用户需求分析:手机用户需求,确定系统边界; 2、概念设计(概念结构设计):是抽象概念模型,较理想的是采用E-R方法。 …

代码随想录算法训练营第七天

● 自己看到题目的第一想法 第454题.四数相加II 方法&#xff1a; 方法一&#xff1a; 暴力法 思路&#xff1a; 注意&#xff1a; 代码&#xff1a; class Solution { public:int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<i…

QT 网络编程 8

1 基础知识 udp tcp 2 UDP 框架 客户端: QUdpSocket x; qint64 writeDatagram( const char *data, qint64 size, const QHostAddress &address, quint16 port );服务器: void Server::initSocket(){udpSocket new QUdpSocket(this);udpSocket->bind(QHostAddress…

macos jupyter notebook字体的修改

终端codemirror 记事本打开 搜索font-family 修改font-size保存即可

重学SpringBoot3-@ConditionalOnXxx条件注解

重学SpringBoot3-ConditionalOnXxx条件注解 引言常见的条件注解常见的条件注解示例扩展条件注解1. ConditionalOnJndi2. ConditionalOnJava3. ConditionalOnCloudPlatform4. ConditionalOnEnabledResourceChain5. 自定义条件注解 总结 引言 Spring Boot 提供了一组强大的条件注…

ERDAS监督分类与温度反演教程

本期带来监督分类教程&#xff0c;更多内容&#xff0c;欢迎关注小编的公众号梧桐凉月哦&#xff01;&#xff01;&#xff01; 一、研究区自然、地理环境特征&#xff1a; 1、景德镇市位于中国江西省东北部&#xff0c;地处赣江中游的赣北盆地&#xff0c;地形地貌以丘陵和低…

mitmproxy代理

文章目录 mitmproxy1. 网络代理2. 安装3. Https请求3.1 启动mitmproxy3.2 获取证书3.3 配置代理3.4 运行测试 4. 请求4.1 读取请求4.2 修改请求4.3 拦截请求 5. 响应5.1 读取响应5.2 修改响应 6. 案例&#xff1a;共享账号6.1 登录bilibili获取cookies6.2 在代理请求中设置cook…

ER-NeRF实时对话数字人模型训练与部署

ER-NeRF是基于NeRF用于生成数字人的方法&#xff0c;可以达到实时生成的效果。 下载源码 cd D:\Projects\ git clone https://github.com/Fictionarry/ER-NeRF cd D:\Projects\ER-NeRF 下载模型 准备面部解析模型 wget https://github.com/YudongGuo/AD-NeRF/blob/master/…

MyBatisPlus入门教程

MyBatisPlus MyBatis-Plus (opens new window)&#xff08;简称 MP&#xff09;是一个 MyBatis (opens new window) 的增强工具&#xff0c;在 MyBatis 的基础上只做增强不做改变&#xff0c;为简化开发、提高效率而生。 官网地址&#xff1a;https://baomidou.com/ 一、入门案…

sql注入之sqli-labs-less-1 错误注入

输入?id1 得到登录页面&#xff1a; 通过order by 函数试探&#xff1a; 5的时候报错 试探到3 的时候返回正确的值&#xff1a; 然后继续注入&#xff1a;?id -1 union select 1,2,3 -- 查看回显点&#xff1a; 开始查看数据库内容&#xff1a;id-1 union select 1,databa…

open-spider开源爬虫工具:抖音数据采集

在当今信息爆炸的时代&#xff0c;网络爬虫作为一种自动化的数据收集工具&#xff0c;其重要性不言而喻。它能够帮助我们从互联网上高效地提取和处理数据&#xff0c;为数据分析、市场研究、内容监控等领域提供支持。抖音作为一个全球性的短视频平台&#xff0c;拥有海量的用户…

CKA考生注意:这些Deployment要点能助你一臂之力!

往期精彩文章 : 提升CKA考试胜算&#xff1a;一文带你全面了解RBAC权限控制&#xff01;揭秘高效运维&#xff1a;如何用kubectl top命令实时监控K8s资源使用情况&#xff1f;CKA认证必备&#xff1a;掌握k8s网络策略的关键要点提高CKA认证成功率&#xff0c;CKA真题中的节点维…

68-解构赋值,迭代器,生成器函数

1.解构赋值(针对数组array&#xff0c;字符串String及对象object以) 结构赋值是一种特殊的语法&#xff0c;通过将各种结构中的元素复制到变量中达到"解构"的目的&#xff0c;但是数组本身没有改变 1.1解构单层数组 <script>let arr [1,2,3,4,5];//获取数组…