JAVA设计模式第十讲:SPI - 业务差异解决方案

JAVA设计模式第十讲:SPI - 业务差异解决方案

我们需要在不修改源代码的情况下,动态为程序提供一系列额外的特性。首先想到的是Spring的AOP技术来构建应用插件,但是在Java自带的插件中,就有完整的实现。SPI(Service Provider Interface),是JDK内置的一种 服务提供发现机制,可以用来启用框架扩展和替换组件,主要是被框架的开发人员使用。本文是设计模式第十讲,SPI - 业务差异解决方案

文章目录

  • JAVA设计模式第十讲:SPI - 业务差异解决方案
    • 1、什么是原生SPI?
    • 2、SPI机制的简单示例
    • 3、SPI机制的广泛应用
      • 3.1、SPI机制在 JDBC DriverManager 的应用
      • 3.2、SPI机制 - Common-Logging
      • 3.3、SPI机制 - 插件体系
      • 3.4、SPI机制 - Spring中SPI机制
    • 4、SPI机制深入理解
      • 4.1、SPI机制通常怎么使用
        • 1、定义标准
        • 2、具体厂商或者框架开发者实现
        • 3、程序猿使用
        • 4、使用规范
      • 4.2、SPI和API的区别是什么
      • 4.3、SPI机制实现原理
      • 4.4、原生SPI存在的问题?
    • 5、政采云对SPI的使用
      • 5.1、背景,我们要解决的问题?
        • 方案一、服务多态
        • 方案二、服务整合
        • 方案三、规则配置 + 自动路由
      • 5.2、使用场景
    • 6、业界如何使用SPI?
      • 6.1、有赞对SPI的使用?
      • 6.2、蘑菇街对SPI的使用
      • 6.3、白龙马对SPI的使用?
    • Action1:SPI开发记录
    • Action2:说一说Java、Spring、Dubbo三者SPI机制的原理和区别

1、什么是原生SPI?

SPI(Service Provider Interface),是JDK内置的一种 服务提供发现机制,可以用来启用框架扩展和替换组件,主要是被框架的开发人员使用。

比如 java.sql.Driver 接口,其他不同厂商可以针对同一接口做出不同的实现,MySQL和PostgreSQL都有不同的实现提供给用户,而Java的SPI机制可以为某个接口寻找服务实现。Java中SPI机制主要思想是将装配的控制权移到程序之外,在模块化设计中这个机制尤其重要,其核心思想就是 解耦

  • 是一种规范

SPI整体机制图如下:

  • img

当服务的提供者提供了一种接口的实现之后,需要在classpath下的META-INF/services/目录里创建一个以服务接口命名的文件,这个文件里的内容就是这个接口的具体的实现类。当其他的程序需要这个服务的时候,就可以通过查找这个jar包(一般都是以jar包做依赖)的META-INF/services/中的配置文件,配置文件中有接口的具体实现类名,可以根据这个类名进行加载实例化,就可以使用该服务了。JDK中查找服务的实现的工具类是:java.util.ServiceLoader

2、SPI机制的简单示例

案例:我们现在需要使用一个内容搜索接口,搜索的实现可能是基于文件系统的搜索,也可能是基于数据库的搜索。

  • 先定义好接口
public interface Search {public List<String> searchDoc(String keyword);   
}
  • 文件搜索实现
public class FileSearch implements Search{@Overridepublic List<String> searchDoc(String keyword) {System.out.println("文件搜索 "+keyword);return null;}
}
  • 数据库搜索实现
public class DatabaseSearch implements Search{@Overridepublic List<String> searchDoc(String keyword) {System.out.println("数据搜索 "+keyword);return null;}
}
  • resources 接下来可以在resources下新建META-INF/services/目录,然后新建接口全限定名的文件:com.cainiao.ys.spi.learn.Search,里面加上我们需要用到的实现类
com.cainiao.ys.spi.learn.FileSearch
  • 测试方法
public class TestCase {public static void main(String[] args) {ServiceLoader<Search> s = ServiceLoader.load(Search.class);Iterator<Search> iterator = s.iterator();while (iterator.hasNext()) {Search search =  iterator.next();search.searchDoc("hello world");}}
}

可以看到输出结果:文件搜索 hello world

如果在 com.cainiao.ys.spi.learn.Search 文件里写上两个实现类,那最后的输出结果就是两行了。

这就是因为ServiceLoader.load(Search.class) 在加载某接口时,会去META-INF/services下找接口的全限定名文件,再根据里面的内容加载相应的实现类。

这就是spi的思想,接口的实现由provider实现,provider只用在提交的jar包里的 META-INF/services下根据平台定义的接口新建文件,并添加进相应的实现类内容就好

3、SPI机制的广泛应用

3.1、SPI机制在 JDBC DriverManager 的应用

在JDBC4.0之前,我们开发有连接数据库的时候,通常会用Class.forName(“com.mysql.jdbc.Driver”) 这句先加载数据库相关的驱动,然后再进行获取连接等的操作。而JDBC4.0之后不需要用 Class.forName(“com.mysql.jdbc.Driver”) 来加载驱动,直接获取连接就可以了,现在这种方式就是使用了Java的SPI扩展机制来实现

JDBC接口定义

  • 首先在java中定义了接口java.sql.Driver,并没有具体的实现,具体的实现都是由不同厂商来提供的。

mysql实现

  • 在mysql的jar包mysql-connector-java-6.0.6.jar中,可以找到META-INF/services目录,该目录下会有一个名字为java.sql.Driver的文件,文件内容是com.mysql.cj.jdbc.Driver,这里面的内容就是针对Java中定义的接口的实现。
  • 在这里插入图片描述

postgresql实现

  • 同样在postgresql的jar包postgresql-42.0.0.jar中,也可以找到同样的配置文件,文件内容是 org.postgresql.Driver,这是postgresql 对Java的java.sql.Driver的实现。
  • 在这里插入图片描述

使用方法

上面说了,现在使用SPI扩展来加载具体的驱动,我们在Java中写连接数据库的代码的时候,不需要再使用Class.forName("com.mysql.jdbc.Driver")来加载驱动了,而是直接使用如下代码:

String url = "jdbc:xxxx://xxxx:xxxx/xxxx";
Connection conn = DriverManager.getConnection(url,username,password);
.....

这里并没有涉及到spi的使用,接着看下面的解析。

源码实现

上面的使用方法,就是我们普通的连接数据库的代码,并没有涉及到SPI的东西,但是有一点我们可以确定的是,我们没有写有关具体驱动的硬编码Class.forName("com.mysql.jdbc.Driver")

上面的代码可以直接获取数据库连接进行操作,但是跟SPI有啥关系呢?上面代码没有了加载驱动的代码,我们怎么去确定使用哪个数据库连接的驱动呢?这里就涉及到使用Java的SPI扩展机制来查找相关驱动的东西了,关于驱动的查找其实都在DriverManager中,DriverManager是Java中的实现,用来获取数据库连接,在DriverManager中有一个静态代码块如下:

public static Driver getDriver(String url) throws SQLException {println("DriverManager.getDriver(\"" + url + "\")");ensureDriversInitialized();...}

可以看到是加载实例化驱动的,接着看ensureDriversInitialized方法:

private static void ensureDriversInitialized() {if (driversInitialized) {return;}synchronized (lockForInitDrivers) {if (driversInitialized) {return;}String drivers;try {drivers = AccessController.doPrivileged(new PrivilegedAction<String>() {public String run() {// 从系统变量"jdbc.drivers"中获取有关驱动的定义return System.getProperty(JDBC_DRIVERS_PROPERTY);}});} catch (Exception ex) {drivers = null;}AccessController.doPrivileged(new PrivilegedAction<Void>() {public Void run() {// 使用SPI来获取驱动的实现ServiceLoader<Driver> loadedDrivers = ServiceLoader.load(Driver.class);// 遍历使用SPI获取到的具体实现,实例化各个实现类Iterator<Driver> driversIterator = loadedDrivers.iterator();try {while (driversIterator.hasNext()) {driversIterator.next();}} catch (Throwable t) {// Do nothing}return null;}});println("DriverManager.initialize: jdbc.drivers = " + drivers);if (drivers != null && !drivers.equals("")) {String[] driversList = drivers.split(":");println("number of Drivers:" + driversList.length);// 根据第一步获取到的驱动列表来实例化具体实现类for (String aDriver : driversList) {try {println("DriverManager.Initialize: loading " + aDriver);Class.forName(aDriver, true, ClassLoader.getSystemClassLoader());} catch (Exception ex) {println("DriverManager.Initialize: load failed: " + ex);}}}driversInitialized = true;println("JDBC DriverManager initialized");}
}

上面的代码主要步骤是:

  • 1、从系统变量"jdbc.drivers"中获取有关驱动的定义。
  • 2、使用SPI来获取驱动的实现。
  • 3、遍历使用SPI获取到的具体实现,实例化各个实现类。
  • 4、根据第一步获取到的驱动列表来实例化具体实现类。

我们主要关注2,3步,这两步是SPI的用法,首先看第二步,使用SPI来获取驱动的实现,对应的代码是:

ServiceLoader<Driver> loadedDrivers = ServiceLoader.load(Driver.class);

这里没有去 META-INF/services 目录下查找配置文件,也没有加载具体实现类,做的事情就是封装了我们的接口类型和类加载器,并初始化了一个迭代器。

接着看第三步,遍历使用SPI获取到的具体实现,实例化各个实现类,对应的代码如下:

//获取迭代器
Iterator<Driver> driversIterator = loadedDrivers.iterator();
//遍历所有的驱动实现
while(driversIterator.hasNext()) {driversIterator.next();
}

在遍历的时候,首先调用driversIterator.hasNext()方法,这里会搜索classpath下以及jar包中所有的META-INF/services目录下的java.sql.Driver文件,并找到文件中的实现类的名字,此时并没有实例化具体的实现类(ServiceLoader具体的源码实现在下面)。

然后是调用driversIterator.next();方法,此时就会根据驱动名字具体实例化各个实现类了。现在驱动就被找到并实例化了。

可以看下截图,我在测试项目中添加了两个jar包,mysql-connector-java-6.0.6.jarpostgresql-42.0.0.0.jar,跟踪到DriverManager中之后:

img

可以看到此时迭代器中有两个驱动,mysql和postgresql的都被加载了。

3.2、SPI机制 - Common-Logging

common-logging(也称Jakarta Commons Logging,缩写 JCL)是常用的日志库门面,具体日志库相关可以看这篇。我们看下它是怎么解耦的。

首先,日志实例是通过LogFactory的 getLog(String) 方法创建的:

public static getLog(Class clazz) throws LogConfigurationException {return getFactory().getInstance(clazz);
}

LogFatory是一个抽象类,它负责加载具体的日志实现,分析其Factory getFactory()方法:

public static org.apache.commons.logging.LogFactory getFactory() throws LogConfigurationException {// Identify the class loader we will be usingClassLoader contextClassLoader = getContextClassLoaderInternal();if (contextClassLoader == null) {// This is an odd enough situation to report about. This// output will be a nuisance on JDK1.1, as the system// classloader is null in that environment.if (isDiagnosticsEnabled()) {logDiagnostic("Context classloader is null.");}}// Return any previously registered factory for this class loaderorg.apache.commons.logging.LogFactory factory = getCachedFactory(contextClassLoader);if (factory != null) {return factory;}if (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] LogFactory implementation requested for the first time for context classloader " +objectId(contextClassLoader));logHierarchy("[LOOKUP] ", contextClassLoader);}// Load properties file.//// If the properties file exists, then its contents are used as// "attributes" on the LogFactory implementation class. One particular// property may also control which LogFactory concrete subclass is// used, but only if other discovery mechanisms fail..//// As the properties file (if it exists) will be used one way or// another in the end we may as well look for it first.// classpath根目录下寻找commons-logging.propertiesProperties props = getConfigurationFile(contextClassLoader, FACTORY_PROPERTIES);// Determine whether we will be using the thread context class loader to// load logging classes or not by checking the loaded properties file (if any).// classpath根目录下commons-logging.properties是否配置use_tcclClassLoader baseClassLoader = contextClassLoader;if (props != null) {String useTCCLStr = props.getProperty(TCCL_KEY);if (useTCCLStr != null) {// The Boolean.valueOf(useTCCLStr).booleanValue() formulation// is required for Java 1.2 compatibility.if (Boolean.valueOf(useTCCLStr).booleanValue() == false) {// Don't use current context classloader when locating any// LogFactory or Log classes, just use the class that loaded// this abstract class. When this class is deployed in a shared// classpath of a container, it means webapps cannot deploy their// own logging implementations. It also means that it is up to the// implementation whether to load library-specific config files// from the TCCL or not.baseClassLoader = thisClassLoader;}}}// 这里真正开始决定使用哪个factory// 首先,尝试查找vm系统属性org.apache.commons.logging.LogFactory,其是否指定factory// Determine which concrete LogFactory subclass to use.// First, try a global system propertyif (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] Looking for system property [" + FACTORY_PROPERTY +"] to define the LogFactory subclass to use...");}try {String factoryClass = getSystemProperty(FACTORY_PROPERTY, null);if (factoryClass != null) {if (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] Creating an instance of LogFactory class '" + factoryClass +"' as specified by system property " + FACTORY_PROPERTY);}factory = newFactory(factoryClass, baseClassLoader, contextClassLoader);} else {if (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] No system property [" + FACTORY_PROPERTY + "] defined.");}}} catch (SecurityException e) {if (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] A security exception occurred while trying to create an" +" instance of the custom factory class" + ": [" + trim(e.getMessage()) +"]. Trying alternative implementations...");}// ignore} catch (RuntimeException e) {// This is not consistent with the behaviour when a bad LogFactory class is// specified in a services file.//// One possible exception that can occur here is a ClassCastException when// the specified class wasn't castable to this LogFactory type.if (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] An exception occurred while trying to create an" +" instance of the custom factory class" + ": [" +trim(e.getMessage()) +"] as specified by a system property.");}throw e;}// 第二,尝试使用java spi服务发现机制,载META-INF/services下寻找 org.apache.commons.logging.LogFactory 实现// Second, try to find a service by using the JDK1.3 class// discovery mechanism, which involves putting a file with the name// of an interface class in the META-INF/services directory, where the// contents of the file is a single line specifying a concrete class// that implements the desired interface.if (factory == null) {if (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] Looking for a resource file of name [" + SERVICE_ID +"] to define the LogFactory subclass to use...");}try {// META-INF/services/org.apache.commons.logging.LogFactory, SERVICE_IDfinal InputStream is = getResourceAsStream(contextClassLoader, SERVICE_ID);if (is != null) {// This code is needed by EBCDIC and other strange systems.// It's a fix for bugs reported in xercesBufferedReader rd;try {rd = new BufferedReader(new InputStreamReader(is, "UTF-8"));} catch (java.io.UnsupportedEncodingException e) {rd = new BufferedReader(new InputStreamReader(is));}String factoryClassName = rd.readLine();rd.close();if (factoryClassName != null && !"".equals(factoryClassName)) {if (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP]  Creating an instance of LogFactory class " +factoryClassName +" as specified by file '" + SERVICE_ID +"' which was present in the path of the context classloader.");}factory = newFactory(factoryClassName, baseClassLoader, contextClassLoader);}} else {// is == nullif (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] No resource file with name '" + SERVICE_ID + "' found.");}}} catch (Exception ex) {// note: if the specified LogFactory class wasn't compatible with LogFactory// for some reason, a ClassCastException will be caught here, and attempts will// continue to find a compatible class.if (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] A security exception occurred while trying to create an" +" instance of the custom factory class" +": [" + trim(ex.getMessage()) +"]. Trying alternative implementations...");}// ignore}}// 第三,尝试从classpath根目录下的commons-logging.properties中查找org.apache.commons.logging.LogFactory属性指定的factory// Third try looking into the properties file read earlier (if found)if (factory == null) {if (props != null) {if (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] Looking in properties file for entry with key '" + FACTORY_PROPERTY +"' to define the LogFactory subclass to use...");}String factoryClass = props.getProperty(FACTORY_PROPERTY);if (factoryClass != null) {if (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] Properties file specifies LogFactory subclass '" + factoryClass + "'");}factory = newFactory(factoryClass, baseClassLoader, contextClassLoader);// TODO: think about whether we need to handle exceptions from newFactory} else {if (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] Properties file has no entry specifying LogFactory subclass.");}}} else {if (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] No properties file available to determine" + " LogFactory subclass from..");}}}// 最后,使用后备factory实现,org.apache.commons.logging.impl.LogFactoryImpl// Fourth, try the fallback implementation classif (factory == null) {if (isDiagnosticsEnabled()) {logDiagnostic("[LOOKUP] Loading the default LogFactory implementation '" + FACTORY_DEFAULT +"' via the same classloader that loaded this LogFactory" +" class (ie not looking in the context classloader).");}// Note: unlike the above code which can try to load custom LogFactory// implementations via the TCCL, we don't try to load the default LogFactory// implementation via the context classloader because:// * that can cause problems (see comments in newFactory method)// * no-one should be customising the code of the default class// Yes, we do give up the ability for the child to ship a newer// version of the LogFactoryImpl class and have it used dynamically// by an old LogFactory class in the parent, but that isn't// necessarily a good idea anyway.factory = newFactory(FACTORY_DEFAULT, thisClassLoader, contextClassLoader);}if (factory != null) {/*** Always cache using context class loader.*/cacheFactory(contextClassLoader, factory);if (props != null) {Enumeration names = props.propertyNames();while (names.hasMoreElements()) {String name = (String) names.nextElement();String value = props.getProperty(name);factory.setAttribute(name, value);}}}return factory;
}

可以看出,抽象类LogFactory加载具体实现的步骤如下:

  • 1、从vm系统属性org.apache.commons.logging.LogFactory
  • 2、使用SPI服务发现机制,发现org.apache.commons.logging.LogFactory的实现
  • 3、查找classpath根目录commons-logging.properties的org.apache.commons.logging.LogFactory属性是否指定factory实现
  • 4、使用默认factory实现,org.apache.commons.logging.impl.LogFactoryImpl

LogFactory的getLog()方法返回类型是 org.apache.commons.logging.Log 接口,提供了从trace到fatal方法。可以确定,如果日志实现提供者只要实现该接口,并且使用继承自 org.apache.commons.logging.LogFactory 的子类创建Log,必然可以构建一个松耦合的日志系统。

3.3、SPI机制 - 插件体系

其实最具spi思想的应该属于插件开发,这里具体说一下eclipse的插件思想。

Eclipse使用OSGi作为插件系统的基础,动态添加新插件和停止现有插件,以动态的方式管理组件生命周期。

一般来说,插件的文件结构必须在指定目录下包含以下三个文件:

  • META-INF/MANIFEST.MF: 项目基本配置信息,版本、名称、启动器等
  • build.properties: 项目的编译配置信息,包括,源代码路径、输出路径
  • plugin.xml:插件的操作配置信息,包含弹出菜单及点击菜单后对应的操作执行类等

当eclipse启动时,会遍历plugins文件夹中的目录,扫描每个插件的清单文件MANIFEST.MF,并建立一个内部模型来记录它所找到的每个插件的信息,就实现了动态添加新的插件。

这也意味着是eclipse制定了一系列的规则,像是文件结构、类型、参数等。插件开发者遵循这些规则去开发自己的插件,eclipse并不需要知道插件具体是怎样开发的,只需要在启动的时候根据配置文件解析、加载到系统里就好了,是spi思想的一种体现

3.4、SPI机制 - Spring中SPI机制

在springboot的自动装配过程中,最终会加载META-INF/spring.factories文件,而加载的过程是由SpringFactoriesLoader加载的。从CLASSPATH下的每个Jar包中搜寻所有META-INF/spring.factories配置文件,然后将解析properties文件,找到指定名称的配置后返回。需要注意的是,其实这里不仅仅是会去ClassPath路径下查找,会扫描所有路径下的Jar包,只不过这个文件只会在Classpath下的jar包中。

public static final String FACTORIES_RESOURCE_LOCATION = "META-INF/spring.factories";// spring.factories文件的格式为:key=value1,value2,value3
// 从所有的jar包中找到META-INF/spring.factories文件
// 然后从文件中解析出key=factoryClass类名称的所有value值
public static List<String> loadFactoryNames(Class<?> factoryClass, ClassLoader classLoader) {String factoryClassName = factoryClass.getName();// 取得资源文件的URLEnumeration<URL> urls = (classLoader != null ? classLoader.getResources(FACTORIES_RESOURCE_LOCATION) : ClassLoader.getSystemResources(FACTORIES_RESOURCE_LOCATION));List<String> result = new ArrayList<String>();// 遍历所有的URLwhile (urls.hasMoreElements()) {URL url = urls.nextElement();// 根据资源文件URL解析properties文件,得到对应的一组@Configuration类Properties properties = PropertiesLoaderUtils.loadProperties(new UrlResource(url));String factoryClassNames = properties.getProperty(factoryClassName);// 组装数据,并返回result.addAll(Arrays.asList(StringUtils.commaDelimitedListToStringArray(factoryClassNames)));}return result;
}

4、SPI机制深入理解

4.1、SPI机制通常怎么使用

看完上面的几个例子解析,应该都能知道大概的流程了:

  • 有关组织或者公司定义标准。
  • 具体厂商或者框架开发者实现。
  • 程序员使用。

1、定义标准

定义标准,就是定义接口。比如接口java.sql.Driver

2、具体厂商或者框架开发者实现

厂商或者框架开发者开发具体的实现:

META-INF/services目录下定义一个名字为接口全限定名的文件,比如java.sql.Driver文件,文件内容是具体的实现名字,比如me.cxis.sql.MyDriver

写具体的实现me.cxis.sql.MyDriver,都是对接口Driver的实现。

3、程序猿使用

我们会引用具体厂商的jar包来实现我们的功能

ServiceLoader<Driver> loadedDrivers = ServiceLoader.load(Driver.class);
//获取迭代器
Iterator<Driver> driversIterator = loadedDrivers.iterator();
//遍历
while(driversIterator.hasNext()) {driversIterator.next();//可以做具体的业务逻辑
}

4、使用规范

最后总结一下jdk spi需要遵循的规范

img

4.2、SPI和API的区别是什么

SPI和API的区别是什么

这里实际包含两个问题,第一个SPI和API的区别?第二个什么时候用API,什么时候用SPI?

从面向接口编程说起

img

我们在“调用方”和“实现方”之间引入了“接口”,上图没有给出“接口”应该位于哪个“包”中,从纯粹的可能性上考虑,我们有三种选择:

  1. “接口”位于“调用方”所在的“包”中。
  2. “接口”位于“实现方”所在的“包”中。
  3. “接口”位于独立的“包”中。

下面让我们依次分析这三种可能性

场景1:“接口”位于“调用方”所在的“包”中

img

SPI - “接口”位于“调用方”所在的“包”中

  • 概念上更依赖调用方。
  • 组织上位于调用方所在的包中。
  • 实现位于独立的包中。
  • 常见的例子是:插件模式的插件。

场景2:“接口”位于“实现方”所在的“包”中

img

API - “接口”位于“实现方”所在的“包”中

  • 概念上更接近实现方。
  • 组织上位于实现方所在的包中。
  • 实现和接口在一个包中。

参考:

  • difference-between-spi-and-api
  • 设计原则:小议 SPI 和 API

场景3:“接口”位于独立的“包”中

  • 如果一个“接口”在一个上下文是“API”,在另一个上下文是“SPI”,那么你就可以这么组织

4.3、SPI机制实现原理

不妨看下JDK中ServiceLoader<S>方法的具体实现:

//ServiceLoader实现了Iterable接口,可以遍历所有的服务实现者
public final class ServiceLoader<S>implements Iterable<S>
{//查找配置文件的目录private static final String PREFIX = "META-INF/services/";//表示要被加载的服务的类或接口private final Class<S> service;//这个ClassLoader用来 定位,加载,实例化服务提供者private final ClassLoader loader;// 访问控制上下文private final AccessControlContext acc;// 缓存已经被实例化的服务提供者,按照实例化的顺序存储private LinkedHashMap<String,S> providers = new LinkedHashMap<>();// 迭代器private LazyIterator lookupIterator;// 重新加载,就相当于重新创建 ServiceLoader了,用于新的服务提供者安装到正在运行的Java虚拟机中的情况。public void reload() {// 清空缓存中所有已实例化的服务提供者providers.clear();// 新建一个迭代器,该迭代器会从头查找和实例化服务提供者lookupIterator = new LazyIterator(service, loader);}//私有构造器//使用指定的类加载器和服务创建服务加载器//如果没有指定类加载器,使用系统类加载器,就是应用类加载器。private ServiceLoader(Class<S> svc, ClassLoader cl) {service = Objects.requireNonNull(svc, "Service interface cannot be null");loader = (cl == null) ? ClassLoader.getSystemClassLoader() : cl;acc = (System.getSecurityManager() != null) ? AccessController.getContext() : null;reload();}//解析失败处理的方法private static void fail(Class<?> service, String msg, Throwable cause)throws ServiceConfigurationError {throw new ServiceConfigurationError(service.getName() + ": " + msg,cause);}private static void fail(Class<?> service, String msg)throws ServiceConfigurationError {throw new ServiceConfigurationError(service.getName() + ": " + msg);}private static void fail(Class<?> service, URL u, int line, String msg)throws ServiceConfigurationError {fail(service, u + ":" + line + ": " + msg);}//解析服务提供者配置文件中的一行//首先去掉注释校验,然后保存//返回下一行行号//重复的配置项和已经被实例化的配置项不会被保存private int parseLine(Class<?> service, URL u, BufferedReader r, int lc,List<String> names)throws IOException, ServiceConfigurationError {//读取一行String ln = r.readLine();if (ln == null) {return -1;}//#号代表注释行int ci = ln.indexOf('#');if (ci >= 0) ln = ln.substring(0, ci);ln = ln.trim();int n = ln.length();if (n != 0) {if ((ln.indexOf(' ') >= 0) || (ln.indexOf('\t') >= 0))fail(service, u, lc, "Illegal configuration-file syntax");int cp = ln.codePointAt(0);if (!Character.isJavaIdentifierStart(cp))fail(service, u, lc, "Illegal provider-class name: " + ln);for (int i = Character.charCount(cp); i < n; i += Character.charCount(cp)) {cp = ln.codePointAt(i);if (!Character.isJavaIdentifierPart(cp) && (cp != '.'))fail(service, u, lc, "Illegal provider-class name: " + ln);}if (!providers.containsKey(ln) && !names.contains(ln))names.add(ln);}return lc + 1;}//解析配置文件,解析指定的url配置文件//使用parseLine方法进行解析,未被实例化的服务提供者会被保存到缓存中去private Iterator<String> parse(Class<?> service, URL u)throws ServiceConfigurationError {InputStream in = null;BufferedReader r = null;ArrayList<String> names = new ArrayList<>();try {in = u.openStream();r = new BufferedReader(new InputStreamReader(in, "utf-8"));int lc = 1;while ((lc = parseLine(service, u, r, lc, names)) >= 0);}return names.iterator();}//服务提供者查找的迭代器private class LazyIteratorimplements Iterator<S> {Class<S> service;//服务提供者接口ClassLoader loader;//类加载器Enumeration<URL> configs = null;//保存实现类的urlIterator<String> pending = null;//保存实现类的全名String nextName = null;//迭代器中下一个实现类的全名private LazyIterator(Class<S> service, ClassLoader loader) {this.service = service;this.loader = loader;}private boolean hasNextService() {if (nextName != null) {return true;}if (configs == null) {try {String fullName = PREFIX + service.getName();if (loader == null)configs = ClassLoader.getSystemResources(fullName);elseconfigs = loader.getResources(fullName);}}while ((pending == null) || !pending.hasNext()) {if (!configs.hasMoreElements()) {return false;}pending = parse(service, configs.nextElement());}nextName = pending.next();return true;}private S nextService() {if (!hasNextService())throw new NoSuchElementException();String cn = nextName;nextName = null;Class<?> c = null;try {c = Class.forName(cn, false, loader);}if (!service.isAssignableFrom(c)) {fail(service, "Provider " + cn  + " not a subtype");}try {S p = service.cast(c.newInstance());providers.put(cn, p);return p;}}public boolean hasNext() {if (acc == null) {return hasNextService();} else {PrivilegedAction<Boolean> action = new PrivilegedAction<Boolean>() {public Boolean run() { return hasNextService(); }};return AccessController.doPrivileged(action, acc);}}public S next() {if (acc == null) {return nextService();} else {PrivilegedAction<S> action = new PrivilegedAction<S>() {public S run() { return nextService(); }};return AccessController.doPrivileged(action, acc);}}public void remove() {throw new UnsupportedOperationException();}}//获取迭代器//返回遍历服务提供者的迭代器//以懒加载的方式加载可用的服务提供者// 懒加载的实现是:解析配置文件和实例化服务提供者的工作由迭代器本身完成public Iterator<S> iterator() {return new Iterator<S>() {//按照实例化顺序返回已经缓存的服务提供者实例Iterator<Map.Entry<String,S>> knownProviders= providers.entrySet().iterator();public boolean hasNext() {if (knownProviders.hasNext())return true;return lookupIterator.hasNext();}public S next() {if (knownProviders.hasNext())return knownProviders.next().getValue();return lookupIterator.next();}public void remove() {throw new UnsupportedOperationException();}};}// 为指定的服务使用指定的类加载器来创建一个ServiceLoaderpublic static <S> ServiceLoader<S> load(Class<S> service,ClassLoader loader) {return new ServiceLoader<>(service, loader);}// 使用线程上下文的类加载器来创建ServiceLoaderpublic static <S> ServiceLoader<S> load(Class<S> service) {ClassLoader cl = Thread.currentThread().getContextClassLoader();return ServiceLoader.load(service, cl);}// 使用扩展类加载器为指定的服务创建ServiceLoader// 只能找到并加载已经安装到当前Java虚拟机中的服务提供者,应用程序类路径中的服务提供者将被忽略public static <S> ServiceLoader<S> loadInstalled(Class<S> service) {ClassLoader cl = ClassLoader.getSystemClassLoader();ClassLoader prev = null;while (cl != null) {prev = cl;cl = cl.getParent();}return ServiceLoader.load(service, prev);}public String toString() {return "java.util.ServiceLoader[" + service.getName() + "]";}
}

首先,ServiceLoader实现了Iterable接口,所以它有迭代器的属性,这里主要都是实现了迭代器的hasNextnext方法。这里主要都是调用的lookupIterator的相应hasNextnext方法,lookupIterator是懒加载迭代器。

其次LazyIterator中的hasNext方法,静态变量PREFIX就是”META-INF/services/”目录,这也就是为什么需要在classpath下的META-INF/services/目录里创建一个以服务接口命名的文件。

最后,通过反射方法Class.forName()加载类对象,并用newInstance方法将类实例化,并把实例化后的类缓存到providers对象中,(LinkedHashMap<String,S>类型)然后返回实例对象。

所以我们可以看到ServiceLoader不是实例化以后,就去读取配置文件中的具体实现,并进行实例化。而是等到使用迭代器去遍历的时候,才会加载对应的配置文件去解析,调用hasNext方法的时候会去加载配置文件进行解析,调用next方法的时候进行实例化并缓存。

所有的配置文件只会加载一次,服务提供者也只会被实例化一次,重新加载配置文件可使用reload方法。

4.4、原生SPI存在的问题?

优点:

  • 实现解耦,应用程序可以根据实现业务情况启用或替换组件

缺点:

  • 1、不能按需加载虽然 ServiceLoader 做了延迟载入,但是基本只能通过遍历全部获取,也就是接口的实现类得全部载入并实例化一遍。如果你并不想用某些实现类,或者某些类实例化很耗时,它也被载入并实例化了,这就造成了浪费。

  • 2、获取某个实现类的方式不够灵活,只能通过Iterator 形式获取,不能根据某个参数类获取对应的实现类。

  • 3、多个并发多线程使用ServiceLoader 类的实例不安全

    • 不是线程安全的
  • 4、加载不到实现类时抛出并不是真正原因的异常,错误难定位。

参考文章:探究 SPI 机制原理及优缺点

5、政采云对SPI的使用

5.1、背景,我们要解决的问题?

在这里插入图片描述

方案一、服务多态

// 判断校验对应的sku集合是否允许购买
switch (businessCode) {case NETSUPER:// 校验网超是否有协议限制netsuperItemValidate(buyer, multiMap, ids);result.put(ItemTagEnum.NETSUPER.getTagName(),ids);break;case VACCINE:// 检查疫苗的禁售期, 禁售期内不可买vaccineItemValidate(buyer,multiMap,ids);result.put(ItemTagEnum.VACCINE.getTagName(),ids);break;case BLOCKTRADE:// 检查大宗商品的下浮率blockItemValidate(buyer, multiMap, ids);result.put(ItemTagEnum.BLOCKTRADE.getTagName(), ids);break;default:// 默认校验逻辑defaultItemValidate(buyer, multiMap, ids);
}

存在的问题:

    1. 维护性的问题:冗长的if else会因为新业务的不断涌入让人看不懂,拓展性差;
    1. 业务隔离问题:某个业务的改动,可能会导致全局的出错,故障工单不断;
    1. 发版问题:不同团队都需要针对加购的服务做定制,代码合并冲突和发版冲突不断。

方案二、服务整合

  • 订单基础参数校验,可以考虑使用Spring filter

  • pre-condition:

    1. 权限校验
    1. 订单商品可售校验

      2.1 库存校验

      2.2 协议校验

    1. 根据上下文透传信息获取订单流程的规则配置

      1.1 拆单规则配置读取

  • enricher: 1. 设置店铺订单的上下文信息

  • enricher: 2. 生成分布式订单id 并设置

  • enricher: 3. 设置商品信息

  • 设置价格信息(同步):

    • 1、调用营销中心获取店铺/商品活动
    • 2、调用价格中心获取商品价格
    • 3、获取用户优惠券等使用信息
    • 4、根据1,2,3最终确定订单总价
  • 下单操作主流程(按服务稳定性升序):

    • 1、锁库存(同步) - 要改为使用批量接口.
    • 2、冻结采购计划(同步)
    • 3、锁优惠券
    • 4、创建订单
  • 业务流程差异化,同样是下单业务,不同的渠道会使用不同的流程
  • 我司还好,非主要痛点。最差的情况就是用代码去编排整合呗,后续开个EIP专题分享

方案三、规则配置 + 自动路由

方案三是方案二的优化,限制了更多,但对业务方更透明,对我们的业务来说,路由的上下文信息大部分是固定的。比如大部分行业馆都是靠渠道和区划进行路由的,可以在不自定义的前提下使用这种方案。主要对方案二的优化点如下:

  1. 避免大部分场景下业务方去写路由代码
  2. 一个完整的业务流程中,channel是恒定量,并且贯穿全局
  3. 业务抽象解决共性的80%问题,**系统架构开放性 **解决20%的个性化问题。
    • 80%的路由都是根据channel,20%再写自定义路由来实现.
    • channel的枚举:默认、网超、通用行业馆、湖南、通用定点
// 可以在dubbo嵌入渠道信息
String channelContext = "vaccine";
ThreadLocal.set(channelContext);ItemValidateStrategy auto = SpiProviderManager.getProvider(SimpleProvider.class);class SpiProviderManager {public <T> T getProvider(Class clazz){String channel = ThreadLocal.get();// getProvider 去读配置并根据 channel 加载实现T provider = getProvider(clazz, channel);}
}
businessCode功能点实现类
vaccineSimpleProvidercn.gov.zcy.spi.test.framework.SimpleProviderImpl1
netsuperSimpleProvidercn.gov.zcy.spi.test.framework.SimpleProviderImpl2

方案三的优主要是针对自动路由带来的效果

  • 开发少写了路由的代码, 还通过20%的自定义保证了灵活性

5.2、使用场景

1、商品中心-使用tmf实现商品价格规则引擎

2、Dubbo第三讲:Dubbo的可扩展机制SPI源码解析

6、业界如何使用SPI?

6.1、有赞对SPI的使用?

有赞扩展点文档

6.2、蘑菇街对SPI的使用

Todo

6.3、白龙马对SPI的使用?

todo

Action1:SPI开发记录

[1.3.0-SNAPSHOT] - 2019-06-06

  • Changed
    • 摒弃了原有的基于文件的扩展点加载形式,采用基于spring + 注解的容器对扩展点进行加载的形式,从而使得使用方不用再关心resources/META-INF/services文件的编写
    • 添加升级对比器,业务团队可以快速验证升级版本的正确性

[1.2.1-SNAPSHOT] - 2018-09-13

  • Changed
    • @SpiProvider中的channel改为从String改为数组 并改名为channels,支持多渠道使用同一个SPI
  • Removed
    • @SpiProvider.name 变为可选字段,此字段不再有含义,仅用作展示
    • 删除SpiProviderManager.getProvider(String name)方法

[1.2.0-SNAPSHOT] - 2018-09-06

  • Added
    • spi-collector 新增 version 属性, 标识客户端版本
  • Changed
    • SpiProvider新增必填属性owner,表示服务的作者
    • 为spi-core框架增加插件机制,扩展服务插件化,配置化
    • spi-collector 改为使用 autoConfig

[1.1.0-SNAPSHOT] - 2018-08-22

  • Added
    • SPI元信息收集器,收集SPI信息至管理后台
    • 通过切面生成SPI执行路径,为日后的调用地图提供基础数据。
    • 新增模块cai-spi-admin,用于为SPI服务提供管理后台。
    • 添加对SpiProvider 有多个接口类支持和解析
  • Changed
    • @SpiProvider 新增属性 channel, 用于框架在路由时根据 channel 和 接口实现多态.
    • SpiProviderManamger 中新增多种路由方式
  • Removed
    • @SpiProvider 删除属性 asDefault. 此配置项已经通过 channel = default 进行替换.

[1.0.0-SNAPSHOT] - 2018-08-06

  • Added

    • RouterKey

      spi路由的一种实现方式,为用户提供自定义路由键,通常需要根据业务上下文生成。结合功能点配置一起选择具体的实现类. 参考 spi路由

    • SpiProvider

      扩展点实现类必须声明此注解,用于在项目启动时将spi实现的信息加载到框架.

    • SpiProviderManager

      扩展加载及加载后的状态,元数据信息等均在此类进行管理。同时此类还提供了对外部实现的获取api。

    • Router

      spi路由的另一种实现方式,通过由各扩展点定义自己实现的调用条件来进行路由,框架依次遍历实现,满足条件则执行功能点实现。目前暂未实现,考虑后续是否可以引进把路由代码分散在各个实现的思路。

    • Test case

Action2:说一说Java、Spring、Dubbo三者SPI机制的原理和区别

可以参考这篇文章:说一说Java、Spring、Dubbo三者SPI机制的原理和区别

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/71613.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Win7旗舰版64位桌面创建32位IE方法

很多Win7 64位旗舰版用户系统桌面上的IE8浏览器&#xff0c;打开后都是64位的&#xff0c;而很多网站并不兼容64位的IE浏览器&#xff0c;其实在Win764位系统中IE是分为64位和32位的&#xff0c;出现这样的情况可能是桌面上的IE图标指响的是64位的IE&#xff0c;我们只要重新添…

grid弹性布局 设置宽高一致

效果图如下&#xff1a; 例子&#xff1a;设置每行四列的弹性布局&#xff0c;每个盒子宽高相同&#xff0c;间距为10px .left_list{display: grid;grid-gap: 10px 10px;grid-template-columns: repeat(4,1fr);.list_item{height: 0;padding-bottom:100%;/*高度设置为0&#…

io和进程day03(文件IO、文件属性函数、目录相关函数)

今日任务 代码 #include <stdio.h> #include <string.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <unistd.h> #include <sys/types.h> #include <pwd.h> #include <dirent.h> #in…

【图文并茂】C++介绍之串

1.1串 引子—— ​ 字符串简称为串&#xff0c;串是由字符元素构成的&#xff0c;其中元素的逻辑关系也是一种线性关系。串的处理在计算机非数值处理中占用重要的地位&#xff0c;如信息检索系统&#xff0c;文字编辑等都是以串数据作为处理对象 串是由零个或多个字符组成的…

得心应手应对 OOM 的疑难杂症

Java全能学习面试指南&#xff1a;https://www.javaxiaobear.cn/ 前面我们提到&#xff0c;类的初始化发生在类加载阶段&#xff0c;那对象都有哪些创建方式呢&#xff1f;除了我们常用的 new&#xff0c;还有下面这些方式&#xff1a; 使用 Class 的 newInstance 方法。使用…

[Vue3 博物馆管理系统] 使用Vue3、Element-plus的Layout 布局构建组图文章

系列文章目录 第一章 定制上中下&#xff08;顶部菜单、底部区域、中间主区域显示&#xff09;三层结构首页 第二章 使用Vue3、Element-plus菜单组件构建菜单 第三章 使用Vue3、Element-plus走马灯组件构建轮播图 第四章 使用Vue3、Element-plus tabs组件构建选项卡功能 第五章…

PHP反序列化漏洞

一、序列化&#xff0c;反序列化 序列化&#xff1a;将php对象压缩并按照一定格式转换成字符串过程反序列化&#xff1a;从字符串转换回php对象的过程目的&#xff1a;为了方便php对象的传输和存储 seriallize() 传入参数为php对象&#xff0c;序列化成字符串 unseriali…

go gin gorm连接postgres postgis输出geojson

go gin gorm连接postgres postgis输出geojson 1. 技术环境 go-gin-gorm postgres-postgis go vscode环境安装-智能提示配置 2. 简单实现代码 思路就是&#xff1a;采用原生sql实现查询、更新等&#xff0c;采用gorm的raw来执行sql语句 package mainimport ("fmt"&q…

JavaScript 之 Symbol 数据类型

一、简介 ​ symbol类型是ES6新引入的一种基本数据类型&#xff0c;该类型具有静态属性和静态方法。其中静态属性暴露了几个内建的成员对象&#xff0c;静态方法暴露了全局的symbol注册。 ​ symbol类型具有以下特点&#xff1a;① 唯一性&#xff1a;每个symbol值都是唯一的…

JavaScript设计模式(四)——策略模式、代理模式、观察者模式

个人简介 &#x1f440;个人主页&#xff1a; 前端杂货铺 &#x1f64b;‍♂️学习方向&#xff1a; 主攻前端方向&#xff0c;正逐渐往全干发展 &#x1f4c3;个人状态&#xff1a; 研发工程师&#xff0c;现效力于中国工业软件事业 &#x1f680;人生格言&#xff1a; 积跬步…

【MySQL基础】事务隔离03

目录 隔离性与隔离级别事务隔离的实现事务的启动方式MySQL事务代码示例 在MySQL中&#xff0c;事务支持是在引擎层实现的。MySQL是一个支持多引擎的系统&#xff0c;但并不是所有的引擎都支持事务。比如 MySQL 原生的 MyISAM 引擎就不支持事务&#xff0c;这也是 MyISAM 被 Inn…

29 | 聊聊性能测试的基本方法与应用领域

并发用户数、响应时间、系统吞吐量之间的关系 当系统并发用户数较少时&#xff0c;系统的吞吐量也低&#xff0c;系统处于空闲状态&#xff0c;这个阶段被称为 “空闲区间”。 并发用户数进一步增长&#xff0c;系统的处理能力逐渐趋于饱和&#xff0c;因此每个用户的响应时间会…

Java 日志技术

所以说&#xff0c;要学Logback&#xff01; 配置文件 Logback提供了一个核心配置文件logback.xml&#xff0c;日志框架在记录日志时会读取配置文件中的配置信息&#xff0c;从而记录日志的形式。 可以配置日志输出的位置是文件还是控制台可以配置日志输出的格式还可以配置日…

55、基于 WebFlux 开发 WebSocKet

★ 基于Web Flux开发WebSocket 两步&#xff1a; &#xff08;1&#xff09;实现WebSocketHandler开发WebSocket处理类。 实现该接口时只需要实现Mono handle(WebSocketSession webSocketSession)方法即可。 &#xff08;2&#xff09;使用HandlerMapping和WebSocketHandler…

【Arduino27】DHT11温湿度传感器模拟值实验

硬件准备 DHT11温湿度&#xff1a;1个 面包板&#xff1a;1个 杜邦线&#xff1a;3根 硬件连线 VDD引脚接 5V 电源 DATE引脚接 4号 接口 GND引脚接 GND 接口 软件程序 #include<DHT.h>#define DHT11_pin 4 //温湿度传感器引脚DHT dht(DHT11_pin,DHT11);float tem…

常用echart图总结

柱状图 - category-work,grid直角坐标,legend,series-bar柱状图,tooltip提示框 - makeapie echarts社区图表可视化案例

华为OD机试 - 最多颜色的车辆 - 数据结构map(Java 2022Q4 100分)

目录 专栏导读一、题目描述二、输入描述三、输出描述四、解题思路1、核心思想2、题做多了&#xff0c;你就会发现&#xff0c;这道题属于送分题&#xff0c;为什么这样说&#xff1f;3、具体解题思路&#xff1a; 五、Java算法源码六、效果展示1、输入2、输出 华为OD机试 2023B…

C++ 模板

模板&#xff1a; 模板&#xff0c;即数据是灵魂&#xff0c;其余为肉身&#xff0c;正所谓有趣的灵魂万里挑一&#xff0c;所以想要模板变得完美&#xff0c;关键在于数据&#xff1b;其余不过是抄作业的框架。 模板函数&#xff1a; 模板函数可以自动推导出你传给他的数据类型…

便捷高效的电能管理:利用PLC远程控制网关实时监控配电箱

配电箱是工业生产过程中必不可少的设备&#xff0c;其中的PLC&#xff08;可编程逻辑控制器&#xff09;是实现自动化控制的重要组成部分。为了实时监控配电箱的数据&#xff0c;并进行远程调试上下载与管理控制&#xff0c;我们可以使用PLC数据采集与远程控制网关。 PLC数据采…

2023年全国大学生数学建模B题

多波束测线问题 1.问题提出 单波束测深是利用声波在水中的传播特性来测量水体深度的技术。声波在均匀介质中作匀 速直线传播&#xff0c;在不同界面上产生反射&#xff0c;利用这一原理&#xff0c;从测量船换能器垂直向海底发射声波信号&#xff0c;并记录从声波发射到信号接…