概述:
链表作为 C 语言中一种基础的数据结构,在平时写程序的时候用的并不多,但在操作系统里面使用的非常多。不管是RTOS还是Linux等使用非常广泛,所以必须要搞懂链表,链表分为单向链表和双向链表,单向链表很少用,使用最多的还是双向链表。单向链表懂了双向链表自然就会了。
文章目录
一、链表的概念
链表的构成:
链表的操作:
双向链表
链表与数组的对比
二、链表的创建
三、链表的遍历
四、链表的释放
五、链表节点的查找
六、链表节点的删除
七、链表中插入一个节点
八、链表排序
九、双向链表的创建和遍历
十、双向链表插入节点
一、链表的概念
定义:
链表是一种物理存储上非连续,数据元素的逻辑顺序通过链表中的指针链接次序,实现的一种线性存储结构。
特点:
链表由一系列节点(链表中每一个元素称为节点)组成,节点在运行时动态生成 (malloc),每个节点包括两个部分:
一个是存储数据元素的数据域
另一个是存储下一个节点地址的指针域
图1 单向链表
链表的构成:
链表由一个个节点构成,每个节点一般采用结构体的形式组织,例如:
typedef struct student{int num;char name[20];struct student *next;}STU;
链表节点分为两个域
数据域:存放各种实际的数据,如:num、score等
指针域:存放下一节点的首地址,如:next等.
图2 节点内嵌在一个数据结构中
链表的操作:
链表最大的作用是通过节点把离散的数据链接在一起,组成一个表,这大概就是链表 的字面解释了吧。 链表常规的操作就是节点的插入和删除,为了顺利的插入,通常一条链 表我们会人为地规定一个根节点,这个根节点称为生产者。通常根节点还会有一个节点计 数器,用于统计整条链表的节点个数,具体见图3中的 root_node。
图3带根节点的链表
双向链表
双向链表与单向链表的区别就是节点中有两个节点指针,分别指向前后两个节点,其 它完全一样。有关双向链表的文字描述参考单向链表小节即可,有关双向链表的示意图具体见图4
图4双向链表
链表与数组的对比
在很多公司的嵌入式面试中,通常会问到链表和数组的区别。在 C 语言中,链表与数 组确实很像,两者的示意图具体见图5,这里以双向链表为例。
图5 链表与数组的对比
链表是通过节点把离散的数据链接成一个表,通过对节点的插入和删除操作从而实现 对数据的存取。而数组是通过开辟一段连续的内存来存储数据,这是数组和链表最大的区 别。数组的每个成员对应链表的节点,成员和节点的数据类型可以是标准的 C 类型或者是 用户自定义的结构体。数组有起始地址和结束地址,而链表是一个圈,没有头和尾之分, 但是为了方便节点的插入和删除操作会人为的规定一个根节点。
二、链表的创建
第一步:创建一个节点
第二步:创建第二个节点,将其放在第一个节点的后面(第一的节点的指针域保存第二个节点的地址)
第三步:再次创建节点,找到原本链表中的最后一个节点,接着讲最后一个节点的指针域保存新节点的地址,以此内推。
#include <stdio.h>
#include <stdlib.h>
//定义结点结构体
typedef struct student
{//数据域int num; //学号int score; //分数char name[20]; //姓名//指针域struct student *next;
}STU;void link_creat_head(STU **p_head,STU *p_new)
{STU *p_mov = *p_head;if(*p_head == NULL) //当第一次加入链表为空时,head执行p_new{*p_head = p_new;p_new->next=NULL;}else //第二次及以后加入链表{while(p_mov->next!=NULL){p_mov=p_mov->next; //找到原有链表的最后一个节点}p_mov->next = p_new; //将新申请的节点加入链表p_new->next = NULL;}
}int main()
{STU *head = NULL,*p_new = NULL;int num,i;printf("请输入链表初始个数:\n");scanf("%d",&num);for(i = 0; i < num;i++){p_new = (STU*)malloc(sizeof(STU));//申请一个新节点printf("请输入学号、分数、名字:\n"); //给新节点赋值scanf("%d %d %s",&p_new->num,&p_new->score,p_new->name);link_creat_head(&head,p_new); //将新节点加入链表}
}
三、链表的遍历
第一步:输出第一个节点的数据域,输出完毕后,让指针保存后一个节点的地址
第二步:输出移动地址对应的节点的数据域,输出完毕后,指针继续后移
第三步:以此类推,直到节点的指针域为NULL
//链表的遍历
void link_print(STU *head)
{STU *p_mov;//定义新的指针保存链表的首地址,防止使用head改变原本链表p_mov = head;//当指针保存最后一个结点的指针域为NULL时,循环结束while(p_mov!=NULL){//先打印当前指针保存结点的指针域printf("num=%d score=%d name:%s\n",p_mov->num,\p_mov->score,p_mov->name);//指针后移,保存下一个结点的地址p_mov = p_mov->next;}
}
四、链表的释放
重新定义一个指针q,保存p指向节点的地址,然后p后移保存下一个节点的地址,然后释放q对应的节点,以此类推,直到p为NULL为止
//链表的释放void link_free(STU **p_head){//定义一个指针变量保存头结点的地址STU *pb=*p_head;while(*p_head!=NULL){//先保存p_head指向的结点的地址pb=*p_head;//p_head保存下一个结点地址*p_head=(*p_head)‐>next;//释放结点并防止野指针free(pb);pb = NULL;}}
五、链表节点的查找
先对比第一个结点的数据域是否是想要的数据,如果是就直接返回,如果不是则继续查找下 一个结点,如果到达最后一个结点的时候都没有匹配的数据,说明要查找数据不存在
//链表的查找
//按照学号查找
STU * link_search_num(STU *head,int num)
{STU *p_mov;//定义的指针变量保存第一个结点的地址p_mov=head;//当没有到达最后一个结点的指针域时循环继续while(p_mov!=NULL){//如果找到是当前结点的数据,则返回当前结点的地址if(p_mov->num == num)//找到了{return p_mov;}//如果没有找到,则继续对比下一个结点的指针域p_mov=p_mov->next;}//当循环结束的时候还没有找到,说明要查找的数据不存在,返回NULL进行标识return NULL;//没有找到
}//按照姓名查找
STU * link_search_name(STU *head,char *name)
{STU *p_mov;p_mov=head;while(p_mov!=NULL){if(strcmp(p_mov->name,name)==0)//找到了{return p_mov;}p_mov=p_mov->next;}return NULL;//没有找到
}
六、链表节点的删除
如果链表为空,不需要删除 如果删除的是第一个结点,则需要将保存链表首地址的指针保存第一个结点的下一个结点的 地址 如果删除的是中间结点,则找到中间结点的前一个结点,让前一个结点的指针域保存这个结 点的后一个结点的地址即可
//链表结点的删除
void link_delete_num(STU **p_head,int num)
{STU *pb,*pf;pb=pf=*p_head;if(*p_head == NULL)//链表为空,不用删{printf("链表为空,没有您要删的节点");\return ;}while(pb->num != num && pb->next !=NULL)//循环找,要删除的节点{pf=pb;pb=pb->next;}if(pb->num == num)//找到了一个节点的num和num相同{if(pb == *p_head)//要删除的节点是头节点{//让保存头结点的指针保存后一个结点的地址*p_head = pb->next;}else{//前一个结点的指针域保存要删除的后一个结点的地址pf->next = pb->next;}//释放空间free(pb);pb = NULL;}else//没有找到{printf("没有您要删除的节点\n");}
}
七、链表中插入一个节点
链表中插入一个结点,按照原本链表的顺序插入,找到合适的位置
情况(按照从小到大):
如果链表没有结点,则新插入的就是第一个结点。
如果新插入的结点的数值最小,则作为头结点。
如果新插入的结点的数值在中间位置,则找到前一个,然后插入到他们中间。
如果新插入的结点的数值最大,则插入到最后。
//链表的插入:按照学号的顺序插入
void link_insert_num(STU **p_head,STU *p_new)
{STU *pb,*pf;pb=pf=*p_head;if(*p_head ==NULL)// 链表为空链表{*p_head = p_new;p_new->next=NULL;return ;}while((p_new->num >= pb->num) && (pb->next !=NULL) ){pf=pb;pb=pb->next;}if(p_new->num < pb->num)//找到一个节点的num比新来的节点num大,插在pb的前面{if(pb== *p_head)//找到的节点是头节点,插在最前面{p_new->next= *p_head;*p_head =p_new;}else{pf->next=p_new;p_new->next = pb;}}else//没有找到pb的num比p_new->num大的节点,插在最后{pb->next =p_new;p_new->next =NULL;}
}
八、链表排序
如果链表为空,不需要排序。
如果链表只有一个结点,不需要排序。
先将第一个结点与后面所有的结点依次对比数据域,只要有比第一个结点数据域小的,则交 换位置。
交换之后,拿新的第一个结点的数据域与下一个结点再次对比,如果比他小,再次交换,依 次类推。
第一个结点确定完毕之后,接下来再将第二个结点与后面所有的结点对比,直到最后一个结 点也对比完毕为止。
//链表的排序
void link_order(STU *head)
{STU *pb,*pf,temp;pf=head;if(head==NULL){printf("链表为空,不用排序\n");return ;}if(head->next ==NULL){printf("只有一个节点,不用排序\n");return ;}while(pf->next !=NULL)//以pf指向的节点为基准节点,{pb=pf->next;//pb从基准元素的下个元素开始while(pb!=NULL){if(pf->num > pb->num){temp=*pb;*pb=*pf;*pf=temp;temp.next=pb->next;pb->next=pf->next;pf->next=temp.next;}pb=pb->next;}pf=pf->next;}
}
九、双向链表的创建和遍历
第一步:创建一个节点作为头节点,将两个指针域都保存NULL
第二步:先找到链表中的最后一个节点,然后让最后一个节点的指针域保存新插入节点的地址,新插入节点的两个指针域,一个保存上一个节点的地址,一个保存NULL
#include <stdio.h>
#include <stdlib.h>//定义结点结构体
typedef struct student
{//数据域int num; //学号int score; //分数char name[20]; //姓名//指针域struct student *front; //保存上一个结点的地址struct student *next; //保存下一个结点的地址
}STU;void double_link_creat_head(STU **p_head,STU *p_new)
{STU *p_mov=*p_head;if(*p_head==NULL) //当第一次加入链表为空时,head执行p_new{*p_head = p_new;p_new->front = NULL;p_new->next = NULL;}else //第二次及以后加入链表{while(p_mov->next!=NULL){p_mov=p_mov->next; //找到原有链表的最后一个节点}p_mov->next = p_new; //将新申请的节点加入链表p_new->front = p_mov;p_new->next = NULL;}
}void double_link_print(STU *head)
{STU *pb;pb=head;while(pb->next!=NULL){printf("num=%d score=%d name:%s\n",pb->num,pb->score,pb->name);pb=pb->next;}printf("num=%d score=%d name:%s\n",pb->num,pb->score,pb->name);printf("***********************\n");while(pb!=NULL){printf("num=%d score=%d name:%s\n",pb->num,pb->score,pb->name);pb=pb->front;}
}int main()
{STU *head=NULL,*p_new=NULL;int num,i;printf("请输入链表初始个数:\n");scanf("%d",&num);for(i=0;i<num;i++){p_new=(STU*)malloc(sizeof(STU));//申请一个新节点printf("请输入学号、分数、名字:\n"); //给新节点赋值scanf("%d %d %s",&p_new->num,&p_new->score,p_new->name);double_link_creat_head(&head,p_new); //将新节点加入链表}double_link_print(head);
}
十、双向链表插入节点
按照顺序插入结点
#include <stdio.h>
#include <stdlib.h>//定义结点结构体
typedef struct student
{//数据域int num; //学号int score; //分数char name[20]; //姓名//指针域struct student *front; //保存上一个结点的地址struct student *next; //保存下一个结点的地址
}STU;void double_link_creat_head(STU **p_head,STU *p_new)
{STU *p_mov=*p_head;if(*p_head==NULL) //当第一次加入链表为空时,head执行p_new{*p_head = p_new;p_new->front = NULL;p_new->next = NULL;}else //第二次及以后加入链表{while(p_mov->next!=NULL){p_mov=p_mov->next; //找到原有链表的最后一个节点}p_mov->next = p_new; //将新申请的节点加入链表p_new->front = p_mov;p_new->next = NULL;}
}void double_link_print(STU *head)
{STU *pb;pb=head;while(pb->next!=NULL){printf("num=%d score=%d name:%s\n",pb->num,pb->score,pb->name);pb=pb->next;}printf("num=%d score=%d name:%s\n",pb->num,pb->score,pb->name);printf("***********************\n");while(pb!=NULL){printf("num=%d score=%d name:%s\n",pb->num,pb->score,pb->name);pb=pb->front;}
}//双向链表的删除
void double_link_delete_num(STU **p_head,int num)
{STU *pb,*pf;pb=*p_head;if(*p_head==NULL)//链表为空,不需要删除{printf("链表为空,没有您要删除的节点\n");return ;}while((pb->num != num) && (pb->next != NULL) ){pb=pb->next;}if(pb->num == num)//找到了一个节点的num和num相同,删除pb指向的节点{if(pb == *p_head)//找到的节点是头节点{if((*p_head)->next==NULL)//只有一个节点的情况{*p_head=pb->next;}else//有多个节点的情况{*p_head = pb->next;//main函数中的head指向下个节点(*p_head)->front=NULL;}}else//要删的节点是其他节点{if(pb->next!=NULL)//删除中间节点{pf=pb->front;//让pf指向找到的节点的前一个节点pf->next=pb->next; //前一个结点的next保存后一个结点的地址(pb->next)->front=pf; //后一个结点的front保存前一个结点的地址}else//删除尾节点{pf=pb->front;pf->next=NULL;}}free(pb);//释放找到的节点}else//没找到{printf("没有您要删除的节点\n");}
}int main()
{STU *head=NULL,*p_new=NULL;int num,i;printf("请输入链表初始个数:\n");scanf("%d",&num);for(i=0;i<num;i++){p_new=(STU*)malloc(sizeof(STU));//申请一个新节点printf("请输入学号、分数、名字:\n"); //给新节点赋值scanf("%d %d %s",&p_new->num,&p_new->score,p_new->name);double_link_creat_head(&head,p_new); //将新节点加入链表}double_link_print(head);printf("请输入您要删除的节点的num\n");scanf("%d",&num);double_link_delete_num(&head,num);double_link_print(head);}