数据挖掘:航空公司的客户价值分析

需求分析

理解并掌握聚类分析方法,掌握数据的标准化,掌握寻找最佳聚类数,掌握聚类的绘图,掌握聚类分析的应用场景。

系统实现

实验流程分析

  • 借助航空公司数据,对客户进行分类
  • 对不同类别的客户进行特征分析,比较不同类别客户的价值
  • 对不同价值的客户类别进行个性化服务,制定相应的营销策略

数据准备

  • 加载本次实验所需要用到的包

打开spyder,输入以下代码

import pandas as pd
import numpy as np
from sklearn.metrics import silhouette_score
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans,AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import datetime
plt.rcParams['font.sans-serif']=['SimHei']  #中文正常显示
plt.rcParams['axes.unicode_minus']=False   #让负号正常显示
  • 读取数据,查看数据和整理数据信息

  https:staticfile.eduplus.netldataSetsystemLiblc3b5c0f37fe24797808613bc713d5585.rar。压缩包中的数据为csv数据,解压并将该数据移动到c:/数据分析/data目录中

读取并查看数据

 

取出SUM_YR_1和SUM_YR_2不为空的样本
 

去除掉第一年、第二年票价均为0,同时平均折扣系数大于零和飞行里程大于零的数据
 

  • 取出LRFMC模型数据,并整理

取出LRFMC模型数据

计算入会天数 

L = pd.to_datetime(new_data['LOAD_TIME'])-pd.to_datetime(new_data['FFP_DATE'])
L = np.int64(L.astype(str).str.split().str[0])  # 会员入会天数          
L=pd.DataFrame(L,columns=['Days'])
air_features = pd.concat([L, new_data.iloc[:, 2:]], axis=1)   # 横向拼接
print(air_features.head())

更改列名,描述性统计 

 重置索引

数据标准化

 

寻找最佳聚类个数

  • 绘制拐点图,寻找下降最剧烈的点
sse=[]
for i in range(2,10):result=KMeans(i,random_state=100).fit(data_scale)sse.append(result.inertia_)
plt.figure()
plt.plot(range(2,10),sse,marker='o')
plt.xlabel('k')
plt.ylabel('sse')
plt.show()

k=3/4时最激烈 

  • 绘制轮廓系数图,寻找轮廓系数高的点
sil=[]
for i in range(2,8):result=KMeans(i,random_state=100).fit(data_scale)sil.append(silhouette_score(air_features,result.labels_))
plt.figure()
plt.plot(range(2,8),sil,marker='o')
plt.xlabel('k')
plt.ylabel('sil')
plt.show()

 k=2/3轮廓系数最高,综合k=3

建立聚类模型

  • 绘制聚类图,观察聚类情况

kmeans聚类

绘制聚类图

结果分析

  • 合并数据,并加入分类

  • 聚合各类,对各特征计算平均值

  • 加入客户分类并画图
def customer_type(cluser):if cluser==0:return '重要发展客户'elif cluser==1:return '最重要客户'else:return '一般客户'air_features['客户类型']=air_features['cluster'].apply(customer_type)
print(air_features.head())

 绘制图像

customer_count=air_features['客户类型'].value_counts()
plt.figure()
plt.subplot(1,2,1)
plt.bar(customer_count.index,customer_count.values)
#添加文本
for a,b in zip(customer_count.index,customer_count.values):plt.text(a,b,b,ha='center',va='bottom',color='b')
plt.subplot(1,2,2)
plt.pie(customer_count.values,labels=list(customer_count.index),autopct='%.1f%%', textprops={'color':'r'},shadow=True)
plt.legend(loc=1)
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/715989.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IEEE754标准的c语言阐述,以及几个浮点数常量

很多年前,调研过浮点数与整数之间的双射问题: win7 intel x64 cpu vs2013 c语言浮点数精度失真问题 最近重新学习了一下IEEE754标准,也许实际还有很多深刻问题没有被揭示。 计算机程序设计艺术,据说这本书中也有讨论。 参考&…

抖音视频批量采集软件|视频评论下载工具

在日常工作中,需要频繁下载抖音视频,但逐个复制分享链接下载效率太低?别担心!我们推出了一款专业的抖音视频批量采集软件,基于C#开发,满足您的需求,让您通过关键词搜索视频并自动批量抓取&#…

力扣每日一题 受限条件下可到达节点的数目 DFS

Problem: 2368. 受限条件下可到达节点的数目 文章目录 思路复杂度Code 思路 &#x1f468;‍&#x1f3eb; 灵神 复杂度 时间复杂度: O ( n ) O(n) O(n) 空间复杂度: O ( n ) O(n) O(n) Code class Solution {int ans 0;boolean[] set;List<Integer>[] es;publ…

Unity中URP下实现水体(C#动态生成渐变图)

文章目录 前言一、Shader部分1、申明水渐变图纹理和采样器2、在片元着色器&#xff0c;进行纹理采样&#xff0c;并且输出 二、C#脚本部分1、我们新建一个C#脚本2、我们定义两个变量3、在Start内&#xff0c;new 一个Texture2D(宽&#xff0c;高)4、定义一个Color[宽*高]的颜色…

企微hook源码第二弹

免费的企微框架&#xff0c;可下载测试。 支持文本消息&#xff0c;图片消息&#xff0c;视频消息&#xff0c;文件消息。 有兴趣可以进群交流。649480745&#xff0c;群内不定期开源企微hook源码 接下来就是第二弹的企微hook源码。后续会在群内开源完整源码。

diskMirror-backEnd-spring-boot | diskMirror 后端服务器 SpringBoot 版本!

diskMirror-backEnd-spring-boot 开源技术栏 diskMirror 后端服务器 SpringBoot 版本! 此版本中拓展了 DiskMirrorBackEnd&#xff0c;是一个完全的SpringBoot项目&#xff01; 目录 diskMirror-backEnd-spring-boot 目录我如何使用&#xff1f; 部署与配置我如何使用其中的…

Java+SpringBoot+Vue:志愿服务的数字化之旅

✍✍计算机毕业编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java、…

理想汽车狂飙18%,造车新势力洗牌

2月27日&#xff0c;#理想汽车狂飙18%#话题冲上热搜&#xff1b;前一日&#xff0c;理想汽车(02015.HK)公布了2023年第四季度及全年财报。尽管其营收净利双增长&#xff0c;但业绩增长背后仍有隐忧。 「不二研究」据其2023年报发现&#xff1a;2023年&#xff0c;理想汽车研发…

【办公类-25-01】20240302 UIBOT上传 ”班级主页-育儿知识(家园小报)“

作品展示&#xff1a; 一、背景需求&#xff1a; 本学期制作了 “育儿知识&#xff08;家园小报&#xff09;”合并A4内容 【办公类-22-08】周计划系列&#xff08;4&#xff09;“育儿知识&#xff08;家园小报&#xff09;“ &#xff08;2024年调整版本&#xff09;-CSDN博…

【论文阅读】Usenix Security 2023 你看不见我:对基于激光雷达的自动驾驶汽车驾驶框架的物理移除攻击

文章目录 一.论文信息二.论文内容1.摘要2.引言3.作者贡献4.主要图表5.结论 一.论文信息 论文题目&#xff1a; You Can’t See Me: Physical Removal Attacks on LiDAR-based Autonomous Vehicles Driving Frameworks&#xff08;你看不见我:对基于激光雷达的自动驾驶汽车驾驶…

HCIA-HarmonyOS设备开发V2.0证书

目录 一、不墨迹&#xff0c;上证书二、考试总结三、习题四、知识点五、坚持就有收获 HCIA-HarmonyOS Device Developer V2.0 开发者能力认证考试已通过。 一、不墨迹&#xff0c;上证书 一个多月的努力&#xff0c;验证了自己的学习成果&#xff0c;也认识到自己有待提升之处…

微软AI文生图新突破,用于图像生成的多LoRA组合训练模型Multi-LoRA-Composition

微软近期在文本至图像生成领域取得了一项重要突破&#xff0c;通过引入多重低秩适应&#xff08;LoRA&#xff09;技术&#xff0c;成功地创造出了高度个性化和细节丰富的图像。这一研究不仅为我们带来了全新的图像生成方法&#xff0c;还为我们提供了一种基于GPT-4V的图像质量…

switch开关语句

定义 单条件多分支的开关语句。 格式定义 switch(表达式) { case 常量值1: 若干个语句 break; ... case 常量值n: 若干个语句 break; default: 若干语句 } ★注意★&#xff1a; ① 表达式的值必须与int兼容类型&#xff1a; byte&#xff0c;short&#xff0c;int&#xff…

串及BF朴素查找算法(学习整理):

关于串的相关定义&#xff1a; 串&#xff1a;用‘ ’表示的字符序列空串&#xff1a;包含零个字符的串子串&#xff1a;包含传本身和空串的子串 eg: abc(,a,b,c,ab,bc,ac,abc)共7个&#xff1a;串的长度的阶乘1&#xff08;空串&#xff09;真子串&#xff1a;不包含自身的所…

解读OWASP应用安全验证标准ASVS

OWASP应用程序安全验证标准&#xff08;OWASP Application Security Verification Standard&#xff0c;ASVS&#xff09;为测试web应用程序技术安全控制提供了基础&#xff0c;还为开发人员提供了安全开发的要求列表。 1. 简介 OWASP应用安全验证标准&#xff0c;是一份测试应…

电子电气架构——AUTOSAR架构下EcuM唤醒源事件详解

电子电气架构——AUTOSAR架构下EcuM唤醒源事件详解 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 没有人关注你。也无需有人关注你。你必须承认自己的价值,你不能站在他人的角度来反对自己。人…

Verilog原语、Verilog保留关键字

Verilog基元 Vivado合成支持Verilog门级原语&#xff0c;下表所示除外。 Vivado合成不支持Verilog开关级原语&#xff0c;例如以下原语&#xff1a; cmos、nmos、pmos、rcmos、rnmos、rpmos rtran、rtranif0、rtranif1、tran&#xff0c; tranif0&#xff0c;tranif1 门级…

Qt/自定义控件的封装

新建文件&#xff0c;选择Qt设计师界面类 创建空界面 这是自己控件封装的文件&#xff0c;双击跳转到设计界面进行设计 跳转到其他的ui界面&#xff0c;创建一个widget 右键&#xff0c;选择提升为 在提升的类名称输入刚刚创建的类名&#xff0c;添加后选择提升&#xff0c;勾选…

政安晨【示例演绎虚拟世界开发】(五):从制作一个对战小游戏开始(Cocos Creator 《击败老大》)(第二段)

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: AI虚拟世界大讲堂 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 现在我们已经学会了如何向场景中添加图片&#xff0c;接下来继…

计算机设计大赛 深度学习机器视觉车道线识别与检测 -自动驾驶

文章目录 1 前言2 先上成果3 车道线4 问题抽象(建立模型)5 帧掩码(Frame Mask)6 车道检测的图像预处理7 图像阈值化8 霍夫线变换9 实现车道检测9.1 帧掩码创建9.2 图像预处理9.2.1 图像阈值化9.2.2 霍夫线变换 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分…