智能驾驶规划控制理论学习03-基于采样的规划方法

目录

一、基于采样的规划方法概述

二、概率路图(PRM)

1、核心思想 

2、实现流程

3、算法描述

4、节点连接处理

5、总结

三、快速搜索随机树(RRT)

1、核心思想

2、实现流程

 3、总结

4、改进RRT算法

①快速搜索随机图(RRG)

②基于运动学的快速搜索随机树(Kinematic-based RRT)


一、基于采样的规划方法概述

        基于采样的方法就是在状态空间中不断地随机撒点,将这些节点根据一定的规则与周围的节点进行连接,以此构造一条条局部路径,最终找到一条从起点到终点的路径。随着采样点的不断增多,最终得到的解会不断逼近最优解。

        一般步骤:

  • 为图表添加随机数种子
  • 以某种策略或者给定条件采样到起始节点
  • 选择和哪些其他节点进行连接
  • 选择添加或者移除哪些边

二、概率路图(PRM)

1、核心思想 

        PRM有两个阶段分别是学习阶段(Learning Phase)和查询阶段(Query Phase)。

        学习阶段:

  • 在配置空间中随机采样足够数量的点;
  • 将相互之间能够到达的节点进行连接。

        查询阶段:

  • 利用图搜索算法寻找图表中从起始节点到目标节点的路径。 

2、实现流程

(a)图中所示为一个用于采样的配置空间,在配置空间中,自动驾驶车辆可以被近似看成一个质点,环境中的障碍物等信息都被近似为图中的forbidden space,自动驾驶车辆在free space空间中运动,二无需考虑其几何形状和运动状态;

(b)图中通过随机采样的方式获得一个坐标点,采样的方法也要根据特定的场景做出不同的选择,常见的采样算法有均匀分布采样(在未知场景中采样)、高斯分布采样(在自动驾驶场景中通常以车道中心线为均值)等;

 (c)图中通过采样大量的点来获取地图的形状;

 (d)图中对采样点进行碰撞检验,删除forbidden space中的采样点;

 (e)图中为删除forbiden space中的采样点后,在free space中保留下来的有效采样点;

  (f)图中每个有效采样点会连接以当前节点为圆心,半径r圆形范围内的所有采样点

 (g)图中若采样点之间的连线与forbiden space相交则发生碰撞,删除发生碰撞的连线;

  (f)图中碰撞检测通过的连线得到保留,作为构成图表graph的边;

 (i)在连线得到的图表graph中添加起始节点和目标节点;

 (j)在graph图中利用图搜索算法寻找最优路径。

3、算法描述

        用伪代码的方式对PRM进行简要描述:

V <- ∅; E <- ∅ // 分别维护两个集合,一个存放顶点,一个存放边
for i = 0,...,n do //假定最大采样点为n,进入循环x <- SampleFree;  //在freespace通过特定的采样策略采样得到一个节点U <- Near(G = (V,E), x, r);  //将节点半径r范围内要专注的邻居节点加入集合U中V <- V ∪ {x}; //将当前采样点x加入集合V中,更新集合Vforeach u in U, in order of increasing ||u - x||, do //对集合U中存入的节点进行处理,为了避免节点过于密集,u和x不能过于接近if x and u are not in the same connected component of G = (V,E) then  // 保证u和x之间的连线与其他连线不重合if CollisionFree(x,u) then E <- E∪{(x,u),(u,x)};  // 通过碰撞检验则将x和u的连线加入集合E
return G=(V,E); // 返回V和E表示的图

        上面是经典的PRM算法描述,也可以对其进行简化:

V <- {x}∪{SampleFree}; E <- ∅;
foreach v in V do U <- near(G=(V,E),v,r)\{v};foreach u in U doif CollisionFree(v,u) then E <- E∪{(v,u),(u,v)}
return G=(V,E);

        主要就是减少了剔除部分节点的步骤,因此在算法实现上效率会降低。

4、节点连接处理

        在PRM实现过程中,选择那些节点相连也是需要考虑的问题,下面给出三种可行的方法:

  • k-Nearest PRM:选择当前节点最近的k个邻居节点

U ← kNearest(G=(V,E),v,k)

  • Bounded-degree PRM:对半径范围内添加的最近节点添加一个边界值k

U ← Near(G,x,r) ∩ kNearest(G=(V,E),v,k)

  • Variable-radius PRM:让连接半径称为对应节点个数的函数,而不是固定的参数

5、总结

        PRM优点:具有概率完备性,只要采样点足够多,并且生成的图表有解那么一定可以结合图搜索算法找到一条最优解路径;

        缺点:

  • 如果是连接特定起点和终点,那么通过PRM的两个阶段先建图在搜索是比较浪费资源的;
  • 搜索得到的路径是节点之间通过直线连接的,不符合车辆的运动学约束。

三、快速搜索随机树(RRT)

1、核心思想

        与PRM有学习和查询两个阶段,并且在学习阶段构造的是一个图不同,RRT只有一个阶段,在采样结束的同时就能确定路径,RRT在采样的过程中维护的是一个树结构。相比图描述的网络关系,树结构描述的是一种层次关系。

        在RRT算法中,通常将起始节点作为树的根节点,在采样搜索到目标节点时通过回溯就可以确定路径。

2、实现流程

        依然使用伪代码对实现流程进行简要描述:

V <- {root}; E <- ∅; // 维护集合V和E,分别存放节点和边,在V中先将初始节点作为根节点放入
for i = 1,...,n doxrand ← SampleFree; // 在freespcace中得到采样点xrandxnearest ← Nearest(G=(V,E),xrand); // 设置离xrand距离最近的树节点为xnearestxnew ← steer(xnearest,xrand); // 通过特定的方式将xnearest与xrand进行连接,此处直接设置了一个中间节点,比较经典的方式设置一段弧长if ObtacleFree(xnearest,xrand) then  // 进行连线障碍物检测V ← V∪{xnew}; E ← E∪{xnearest,xnew};  // 检测通过将边保存到集合E中
return G={V,E};

 3、总结

        优点:如果是找寻找两个特定节点间的路径,RRT的效率会显著地优于PRM;

        缺点:RRT不具备概率完备性,因为它每次都是树的最近节点连接,如下图红色区域中搜索得到的路径显然不是最优解。

4、改进RRT算法

        为了解决RRT算法不具备概率完备性的缺陷,后来又提出了多种改进的RRT算法。

①快速搜索随机图(RRG)
V <- {root}; E <- ∅; 
for i = 1,...,n doxrand ← SampleFree; xnearest ← Nearest(G=(V,E),xrand); xnew ← steer(xnearest,xrand);if ObtacleFree(xnearest,xrand) then Xnear ← Near(G=(V,E),xnew,min{γRRG(log(card(V))/card(V)^(1/d),η); // 将xnew附近给定半径内的所有节点都存入Xnear集合中V ← V∪{xnew}; E ← E∪{xnearest,xnew};foreach xnear in Xnear doif CollisionFree(xnear,xnew) then E ← E∪{xnearest,xnew};  // 将通过碰撞检测的所有Xnear集合中的节点与xnew的连线都存入集合E中return G={V,E};

        核心思想:不仅仅只是连接xnew和xnearest,将xnew半径范围内的所有符合非碰撞条件的节点都连接。

        虽然RRG使得算法具有概率完备性,但是却违背了RRT算法提高效率的初衷,因为RRG算法在实现过程中并没有在维护树结构,输出的依然是一个图,相当于是PRM的学习阶段,还要再利用搜索算法进行最优路径确定。

②基于运动学的快速搜索随机树(Kinematic-based RRT)

        核心思想:利用车辆运动学方法在两个节点之间进行转向,主要在于RRT伪代码中xnew获取步骤的优化。

        上图所示是基于杜宾斯规划(dubins_path_planning)得到的路径,可以看出在引入车辆运动学方法后,得到的最终路径是一条较为平滑的曲线。dubins_path_planning的具体介绍在后面会具体介绍。

四、优化的快速搜索随机数(RRT*)

1、核心思想

  • 与RRG算法相比,RRT*算法维护的是一个树结构,而不是一个图,也就是说会在RRG得的图中删除掉多余的边界;
  • 与原来的RRT算法相比,RRT*增加了重连的步骤以确保各个节点取得的是最小代价值。

2、实现流程

V <- {root}; E <- ∅; 
for i = 1,...,n doxrand ← SampleFree; xnearest ← Nearest(G=(V,E),xrand); xnew ← steer(xnearest,xrand);if ObtacleFree(xnearest,xrand) then // 延续RRG的思想先搜索附近的邻居节点Xnear ← Near(G=(V,E),xnew,min{γRRG(log(card(V))/card(V)^(1/d),η); V ← V∪{xnew};xmin ← xnear; cmin ← Cost(xnearest) + c(Line(xnearest,xnew));// 获取代价值最小节点foreach xnear in Xnear do if CollisionFree(xnear,xnew) && Cost(xnew) + c(Line(xnearest,xnew)) < c(min) thenxmin ← xnear; cmin ← Cost(xnear) + c(Line(xnearest,xnew))// 对节点进行重连,通过xnew更新总代价值值和路径foreach xnear in Xnear do if CollisionFree(xnew,xnear) && Cost(xnew) + c(Line(xnew,xnearest)) < Cost(xnear)then xparent ← Parent(xnear);E ← (E\{xparent,xnear}∪{xnew,xnear}) // 在边集合中删除xnear到其原父节点xparent的连线,重新加入xnew到xnear的连线
return G = {V,E};

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/714888.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【计算机网络实践】在windows上配置Xshell和Xftp连接Ubuntu系统

hebut的课下作业&#xff0c;学习使用Xshell和Xftp连接Linux系统 1. 软件需求 Windows10/11、已安装VM虚拟机的ubuntu系统、Xshell、Xftp。 Xshell和Xftp在家庭/学校免费 - NetSarang Website (xshell.com)里面可以下载到&#xff0c;上面需要的两个软件都在&#xff0c;官网免…

运筹学_1.1.2 线性规划问题-图解法

1.1.2 线性规划问题-图解法 一、图解法求解步骤&#xff08;只适用于两个决策变量问题&#xff09;二、图解法作图实例三、图解法分析线性规划几种解的情况1、唯一最优解2、无穷多最优解3、无界解4、无解或无可行解 四、图解法的几点启示 一、图解法求解步骤&#xff08;只适用…

C++sort排序

前言&#xff1a; C语言的sort函数是一类用于数组排序的函数以下是其简单的使用&#xff1a; 1.头文件&#xff1a; #include<algorithm> 2.使用命名空间&#xff1a; using namespace std; 3.函数形式&#xff1a; sort(数组名,数组名元素个数,排序函数); 默认排…

深入浅出Redis(一):对象与数据结构

引言 Redis是一款基于键值对的数据结构存储系统&#xff0c;它的特点是基于内存操作、单线程处理命令、IO多路复用模型处理网络请求、键值对存储与简单丰富的数据结构等等 这篇文章主要围绕Redis中的对象与数据结构来详细说明键值对存储与简单丰富的数据结构这两大特点 Redi…

运筹学_1.1.4 线性规划问题-解的概念

1.1.4 线性规划问题-解的概念 一、可行解与最优解二、基的概念三、基变量、基向量&#xff1b;非基变量、非基向量&#xff1b;基解、基可行解&#xff1b;四、最优解与可行解、基可行解的关系五、用例题&#xff08;枚举法&#xff09;巩固基解、基可行解、最优解三个概念1、例…

flyway实战

flyway是一款用来管理数据库版本的工具框架 一, 添加依赖 <dependency><groupId>org.flywaydb</groupId><artifactId>flyway-core</artifactId> </dependency> <dependency><groupId>org.springframework</groupId>&l…

第十一届蓝桥杯省赛第一场C++ A组 / B组《网络分析》(c++)

1.题目说明 小明正在做一个网络实验。 他设置了 n 台电脑&#xff0c;称为节点&#xff0c;用于收发和存储数据。 初始时&#xff0c;所有节点都是独立的&#xff0c;不存在任何连接。 小明可以通过网线将两个节点连接起来&#xff0c;连接后两个节点就可以互相通信了。 两…

代码随想录算法训练营第二十五天 | 216.组合总和III 17.电话号码的字母组合

216.组合总和III https://programmercarl.com/0216.%E7%BB%84%E5%90%88%E6%80%BB%E5%92%8CIII.html#%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%89%88%E6%9C%AC class Solution:def combinationSum3(self, k: int, n: int) -> List[List[int]]:result [] # 存放结果集sel…

实现一个移动端焦点轮播图

HTML结构&#xff1a; 创建一个轮播图的容器&#xff0c;并在其中放置轮播图片。 <div id"carousel"> <div class"carousel-item active"> <img src"image1.jpg" alt"Image 1"> </div> <div class&q…

Docker部署ZooKeeper

在分布式系统中,ZooKeeper是一个关键的组件,用于协调和管理多个节点之间的状态。本文将详细介绍如何使用Docker安装和部署ZooKeeper,包括非集群部署和集群部署两种情况。 非集群部署 前期准备 在开始之前,请确保你已经安装了Docker,并且拥有sudo权限。 关闭防火墙和SEL…

5、DVWA代码审计(2)

一、csrf 1、csrf(low) 限制 复现 GET /vulnerabilities/csrf/?password_new123456&password_conf123456&ChangeChange HTTP/1.1 Host: ddd.com Upgrade-Insecure-Requests: 1 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,…

电子电器架构 —— DoIP协议相关的介绍

电子电器架构 —— DoIP协议相关的介绍 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 没有人关注你。也无需有人关注你。你必须承认自己的价值,你不能站在他人的角度来反对自己。人生在世,最怕…

监听者的力量:探索观察者模式和spring使用

观察者模式是一种对象行为型设计模式&#xff0c;它定义了对象之间的一对多依赖关系。 观察者模式通常用于实现分布式事件处理系统、新闻代理或MVC框架的一部分。在这种模式中&#xff0c;一个对象&#xff08;称为“主题”或“可观察对象”&#xff09;维护一系列依赖于它的对…

vue3编写H5适配横竖屏

具体思路如下&#xff1a; 1、监听浏览器屏幕变化&#xff0c;通过监听屏幕宽高&#xff0c;辨别出是横屏&#xff0c;还是竖屏状态 在项目的起始根页面进行监听&#xff0c;我就是在App.vue文件下进行监听 代码如下&#xff1a; <template><RouterView /> <…

【Spring IoC】实验四:特殊值处理

个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名大三在校生&#xff0c;喜欢AI编程&#x1f38b; &#x1f43b;‍❄️个人主页&#x1f947;&#xff1a;落798. &#x1f43c;个人WeChat&#xff1a;hmmwx53 &#x1f54a;️系列专栏&#xff1a;&#x1f5bc;️…

Java4种创建线程方式

目录 一&#xff1a;继承Thread 二&#xff1a;重新Runnable接口 三&#xff1a;Callable 四&#xff1a;lambda 一&#xff1a;继承Thread public static void main(String[] args) {Thread1 t1new Thread1();t1.start(); } class Thread1 extends Thread {Overridepublic…

C++ //练习 10.16 使用lambda编写你自己版本的biggies。

C Primer&#xff08;第5版&#xff09; 练习 10.16 练习 10.16 使用lambda编写你自己版本的biggies。 环境&#xff1a;Linux Ubuntu&#xff08;云服务器&#xff09; 工具&#xff1a;vim 代码块 /*******************************************************************…

BERTopic安装最全教程及报错处理

BERTopic安装 BERTopic的安装比较复杂,直接安装会报错 安装方法1,.whl文件安装 ERROR: Could not build wheels for hdbscan, which is required to install pyproject.toml-based projects正确安装流程 查看python能安装whl的版本pip debug --verbose Compatible tags: 2…

图表背后的智慧:办公场景中的数据可视化革新

在现代办公场景中&#xff0c;数据可视化的应用已经成为提高效率、推动创新的得力工具。无论是管理层还是普通员工&#xff0c;都能从数据可视化中受益匪浅。下面我就以可视化从业者的角度&#xff0c;简单聊聊这个话题。 首先&#xff0c;数据可视化提升了数据的易读性与理解性…

docker安装最新版lastest

docker pull mysql 报missing signature key错误问题原因&#xff1a;如果安装docker用的是yum install docker命令的话&#xff0c;下载下来的docker版本为旧版本&#xff0c;所以会有数字签名有问题 最新版docker安装方法&#xff1a; 卸载旧版本 Docker&#xff08;如果已安…