G8-ACGAN理论

 本文为🔗365天深度学习训练营 中的学习记录博客
 原作者:K同学啊|接辅导、项目定制

我的环境:

1.语言:python3.7

2.编译器:pycharm

3.深度学习框架Pytorch 1.8.0+cu111


 一、对比分析

前面的文章介绍了CGAN(条件生成对抗网络),本文的ACGAN,是在CGAN与SGAN基础上的扩展,通过对判别器进行改进实现了图像分类的功能。

原始GAN网络的功能比较简单:输入噪声数据,输出伪造图片。而后CGAN发现可以通过给GAN的生成器添加辅助信息(比如类别标签),来实现生成图片类别的精确控制。。

  SGAN鉴别器与原始GAN实现有很大不同。它接收3种输入:生成器生成的伪样本X*、训练数据集中无标签的真实样本X和有标签的真实样本X,y。 

  ACGAN是在CGAN基础上更近一步的改进,将判别器的功能扩展为判别真假以及类别区分,可以认为ACGAN的判别器多出一个分类的功能 。

 ACGAN的损失函数也分为了判别损失和分类损失两个部分,其中判别损失和CGAN并没有区别,形式如下:

比较新的损失函数如下:

上面的分类损失就是ACGAN的核心贡献了,对于真实图片Xreal和生成器伪造的图片Xfake,判别器(或者说判别器中的分类器)应该能够预测它所属的类别。 

二、网络结构方面(原文链接:https://blog.csdn.net/qq_35692819/article/details/106684339)

相同的是ACGAN和CGAN在生成器输入时候,噪音z都拼接了采集的labels。
不同的是,ACGAN在判别器输入时,真假数据集都没有拼接labels,labels只是用来在辅助分类器中作为target_labels。而CGAN的判别器输入,真假数据集都拼接了labels。
网络结构上,生成网络和鉴别网络的网络层不再是CGAN的全连接,而是ACGAN的深层卷积网络(这是在DCGAN开始引入的改变),卷积能够更好的提取图片的特征值,所有ACGAN生成的图片边缘更具有连续性,感觉更真实。

代码部分:
 

import argparse
import os
import numpy as npimport torchvision.transforms as transforms
from torchvision.utils import save_imagefrom torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variableimport torch.nn as nn
import torch# 创建用于存储生成图像的目录
os.makedirs("images", exist_ok=True)# 解析命令行参数
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="训练的总轮数")
parser.add_argument("--batch_size", type=int, default=64, help="每个批次的大小")
parser.add_argument("--lr", type=float, default=0.0002, help="Adam优化器的学习率")
parser.add_argument("--b1", type=float, default=0.5, help="Adam优化器的一阶动量衰减")
parser.add_argument("--b2", type=float, default=0.999, help="Adam优化器的二阶动量衰减")
parser.add_argument("--n_cpu", type=int, default=8, help="用于批次生成的CPU线程数")
parser.add_argument("--latent_dim", type=int, default=100, help="潜在空间的维度")
parser.add_argument("--n_classes", type=int, default=10, help="数据集的类别数")
parser.add_argument("--img_size", type=int, default=32, help="每个图像的尺寸")
parser.add_argument("--channels", type=int, default=1, help="图像通道数")
parser.add_argument("--sample_interval", type=int, default=400, help="图像采样间隔")
opt = parser.parse_args()
print(opt)# 检查是否支持GPU加速
cuda = True if torch.cuda.is_available() else False# 初始化神经网络权重的函数
def weights_init_normal(m):classname = m.__class__.__name__if classname.find("Conv") != -1:torch.nn.init.normal_(m.weight.data, 0.0, 0.02)elif classname.find("BatchNorm2d") != -1:torch.nn.init.normal_(m.weight.data, 1.0, 0.02)torch.nn.init.constant_(m.bias.data, 0.0)# 生成器网络类
class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()# 为类别标签创建嵌入层self.label_emb = nn.Embedding(opt.n_classes, opt.latent_dim)# 计算上采样前的初始大小self.init_size = opt.img_size // 4  # Initial size before upsampling# 第一层线性层self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2))# 卷积层块self.conv_blocks = nn.Sequential(nn.BatchNorm2d(128),nn.Upsample(scale_factor=2),nn.Conv2d(128, 128, 3, stride=1, padding=1),nn.BatchNorm2d(128, 0.8),nn.LeakyReLU(0.2, inplace=True),nn.Upsample(scale_factor=2),nn.Conv2d(128, 64, 3, stride=1, padding=1),nn.BatchNorm2d(64, 0.8),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),nn.Tanh(),)def forward(self, noise, labels):# 将标签嵌入到噪声中gen_input = torch.mul(self.label_emb(labels), noise)# 通过第一层线性层out = self.l1(gen_input)# 重新整形为合适的形状out = out.view(out.shape[0], 128, self.init_size, self.init_size)# 通过卷积层块生成图像img = self.conv_blocks(out)return img# 判别器网络类
class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()# 定义判别器块的函数def discriminator_block(in_filters, out_filters, bn=True):"""返回每个判别器块的层"""block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]if bn:block.append(nn.BatchNorm2d(out_filters, 0.8))return block# 判别器的卷积层块self.conv_blocks = nn.Sequential(*discriminator_block(opt.channels, 16, bn=False),*discriminator_block(16, 32),*discriminator_block(32, 64),*discriminator_block(64, 128),)# 下采样后图像的高度和宽度ds_size = opt.img_size // 2 ** 4# 输出层self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.n_classes), nn.Softmax())def forward(self, img):out = self.conv_blocks(img)out = out.view(out.shape[0], -1)validity = self.adv_layer(out)label = self.aux_layer(out)return validity, label# 损失函数
adversarial_loss = torch.nn.BCELoss()
auxiliary_loss = torch.nn.CrossEntropyLoss()# 初始化生成器和判别器
generator = Generator()
discriminator = Discriminator()if cuda:generator.cuda()discriminator.cuda()adversarial_loss.cuda()auxiliary_loss.cuda()# 初始化权重
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)# 配置数据加载器
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(datasets.MNIST("../../data/mnist",train=True,download=True,transform=transforms.Compose([transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]),),batch_size=opt.batch_size,shuffle=True,
)# 优化器
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor# 保存生成图像的函数
def sample_image(n_row, batches_done):"""保存从0到n_classes的生成数字的图像网格"""# 采样噪声z = Variable(FloatTensor(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))))# 为n行生成标签从0到n_classeslabels = np.array([num for _ in range(n_row) for num in range(n_row)])labels = Variable(LongTensor(labels))gen_imgs = generator(z, labels)save_image(gen_imgs.data, "images/%d.png" % batches_done, nrow=n_row, normalize=True)# ----------
# 训练
# ----------for epoch in range(opt.n_epochs):for i, (imgs, labels) in enumerate(dataloader):batch_size = imgs.shape[0]# 真实数据的标签valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False)# 生成数据的标签fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)# 配置输入real_imgs = Variable(imgs.type(FloatTensor))labels = Variable(labels.type(LongTensor))# -----------------# 训练生成器# -----------------optimizer_G.zero_grad()# 采样噪声和标签作为生成器的输入z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, batch_size)))# 生成一批图像gen_imgs = generator(z, gen_labels)# 损失度量生成器的欺骗判别器的能力validity, pred_label = discriminator(gen_imgs)g_loss = 0.5 * (adversarial_loss(validity, valid) + auxiliary_loss(pred_label, gen_labels))g_loss.backward()optimizer_G.step()# ---------------------# 训练判别器# ---------------------optimizer_D.zero_grad()# 真实图像的损失real_pred, real_aux = discriminator(real_imgs)d_real_loss = (adversarial_loss(real_pred, valid) + auxiliary_loss(real_aux, labels)) / 2# 生成图像的损失fake_pred, fake_aux = discriminator(gen_imgs.detach())d_fake_loss = (adversarial_loss(fake_pred, fake) + auxiliary_loss(fake_aux, gen_labels)) / 2# 判别器的总损失d_loss = (d_real_loss + d_fake_loss) / 2# 计算判别器的准确率pred = np.concatenate([real_aux.data.cpu().numpy(), fake_aux.data.cpu().numpy()], axis=0)gt = np.concatenate([labels.data.cpu().numpy(), gen_labels.data.cpu().numpy()], axis=0)d_acc = np.mean(np.argmax(pred, axis=1) == gt)d_loss.backward()optimizer_D.step()print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %d%%] [G loss: %f]"% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), 100 * d_acc, g_loss.item()))batches_done = epoch * len(dataloader) + iif batches_done % opt.sample_interval == 0:sample_image(n_row=10, batches_done=batches_done)

判别器

  1. def discriminator_block(in_filters, out_filters, bn=True):: 这是一个内部函数,用于定义判别器的卷积块。它接受输入的通道数 in_filters 和输出的通道数 out_filters,并返回一个卷积块的列表。

  2. self.conv_blocks = nn.Sequential(...):定义了判别器的卷积层块,它使用了 nn.Sequential 来组合多个卷积块。通过调用 discriminator_block 函数定义了四个卷积块,每个卷积块由一个卷积层、一个 LeakyReLU 激活函数和一个 Dropout2d 层组成。

  3. ds_size = opt.img_size // 2 ** 4:计算下采样后图像的高度和宽度。在这段代码中,每个卷积块都将输入图像的尺寸减半,共执行了 4 次这样的操作。

  4. self.adv_layer = nn.Sequential(...):定义了判别器的输出层。adv_layer 是用于判断图像真假的部分,它是一个全连接层,将卷积层块输出的特征展平后输入到一个 Sigmoid 激活函数中,以输出一个范围在 0 到 1 之间的值,表示图像的真实度。

  5. self.aux_layer = nn.Sequential(...):定义了判别器的辅助输出层。aux_layer 是用于对图像进行分类的部分,它也是一个全连接层,将卷积层块输出的特征展平后输入到一个 Softmax 激活函数中,以输出类别概率分布,其中 opt.n_classes 是类别的数量。

  6. def forward(self, img)::定义了前向传播函数。接收一个输入图像 img,将其输入到卷积层块中进行特征提取,然后将特征展平后分别输入到判别器的输出层 adv_layeraux_layer 中,得到判别器的输出:真假判别结果 validity 和图像类别预测结果 label

生成器 

  1. self.label_emb = nn.Embedding(opt.n_classes, opt.latent_dim): 创建了一个嵌入层 label_emb,用于将类别标签转换为一个与噪声相同维度的向量。这里假设 opt.n_classes 是类别的数量,opt.latent_dim 是噪声的维度。

  2. self.init_size = opt.img_size // 4: 计算了上采样前的初始大小。在这段代码中,初始大小是图像大小的 1/4。

  3. self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2)): 定义了一个线性层 l1,将噪声输入映射到一个特定大小的张量,以供后续卷积层块使用。

  4. self.conv_blocks = nn.Sequential(...):定义了生成器的卷积层块。通过 nn.Sequential 组合了多个层,包括批归一化层、上采样层、卷积层、LeakyReLU 激活函数和 Tanh 激活函数。这些层组合在一起,用于从输入的特征张量生成图像。

  5. def forward(self, noise, labels):: 定义了前向传播函数。接收噪声 noise 和类别标签 labels 作为输入,并经过一系列操作生成图像。首先,通过将标签嵌入到噪声中,将标签信息融合到生成的噪声中。然后,将融合后的输入通过线性层 l1,将其映射到适当的大小。接着,将线性层输出重塑为合适的形状,以适应后续的卷积层块。最后,通过卷积层块生成图像,并将生成的图像作为输出返回。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/712660.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java基础(4)注解,集合,

注解 什么是注解(Annotation)?注解是放在Java源码的类、方法、字段、参数前的一种特殊“注释” // this is a component: Resource("hello") public class Hello {Injectint n;PostConstructpublic void hello(Param String name…

经典文献阅读之--CamMap(基于SLAM地图对不共视相机进行外参标定)

0. 简介 由于多相机之间通常存在有限或无重叠的视场,因此在估计外参相机参数时面临着一定的挑战,为了解决这个问题,本文提出了CamMap:一种新颖的6自由度外参标定流程。根据三个操作规则,使一个多相机系统单独捕捉一些…

【Linux进程】进程状态(运行阻塞挂起)

目录 前言 1. 进程状态 2. 运行状态 3. 阻塞状态 4. 挂起状态 5. Linux中具体的状态 总结 前言 在Linux操作系统中,进程状态非常重要,它可以帮助我们了解进程在系统中的运行情况,从而更好地管理和优化系统资源,在Linux系统中&am…

【Python笔记-设计模式】迭代器模式

一、说明 迭代器模式是一种行为设计模式,让你能在不暴露集合底层表现形式(列表、栈和树等)的情况下遍历集合中所有的元素。 (一) 解决问题 遍历聚合对象中的元素,而不需要暴露该对象的内部表示 (二) 使用场景 需要对聚合对象…

SpringBoot实现短链跳转

目录 1.背景介绍 2.短链跳转的意义 3.SpringBoot中的代码实现 1.建议短链-长链的数据库表:t_url_map: 2.映射实体 3.Dao层实现 4.Service层实现 5.Controller层实现 3.结果测试 4.问题 1.背景介绍 短链跳转是一种通过将长链接转换为短链接的方式&…

南方电网的能源棋局上,蔚来换电扮演什么角色?

2 月 26 日,南网储能科技与蔚来能源签署协议,将充换电站、储能站、可调负载等聚合资源连接到虚拟电厂平台,推动换电站作为分布式储能在虚拟电厂项目上的应用。 蔚来换电站是国内首个智慧微电网型分布式换电设施,可透过换电订单预…

软考-系统集成项目管理中级-信息系统建设与设计

本章重点考点 1.信息系统的生命周期 信息系统建设的内容主要包括设备采购、系统集成、软件开发和运维服务等。信息系统的生命周期可以分为四个阶段:立项、开发、运维和消亡。 2.信息系统开发方法 信息系统常用的开发方法有结构化方法、原型法、面向对象方法等 1)结构化方法 …

AI智能分析网关V4:抽烟/打电话/玩手机行为AI算法及场景应用

抽烟、打电话、玩手机是人们在日常生活中常见的行为,但这些行为在某些场合下可能会带来安全风险。因此,对于这些行为的检测技术及应用就变得尤为重要。今天来给大家介绍一下TSINGSEE青犀AI智能分析网关V4抽烟/打电话/玩手机检测算法及其应用场景。 将监控…

java项目打包运行报异常:xxxxx-1.0-SNAPSHOT.jar中没有主清单属性

pom.xml中加入这段话即可 <build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><version>2.4.4</version><executions><execution><…

安泰ATA-7050高压放大器在微流控细胞分选中的应用

微流控细胞分选是一种用于分离和鉴定生物样本中特定类型细胞的技术&#xff0c;其原理基于将生物细胞通过微通道进行操纵和区分。微流控细胞分选的原理主要基于流体力学、电气学、光学和热力学等多学科的交叉应用。通过设计具有特定尺寸和性质的微通道网络&#xff0c;可实现对…

RV1126芯片概述

RV1126芯片概述 前言1 主要特性2 详细参数 前言 1 主要特性 四核 ARM Cortex-A7 and RISC-V MCU250ms快速开机2.0Tops NPU14M ISP with 3帧 HDR支持3个摄像头同时输入4K H.264/H.265 视频编码和解码 2 详细参数

永磁同步电机无感FOC(龙伯格观测器)算法技术总结-仿真篇

文章目录 1、观测器的引入2、β轴向下的电机观测器数学模型3、β轴向下的转子点角度及速度观测4、Simulink仿真模型搭建4.1模型总览4.2 Luenberger观测器模块4.2.1 I_alpha观测4.2.2 I_beta观测4.2.3 e_alpha、e_beta观测4.2.4 锁相环 4.3 速度设定4.4 速度观测结果4.5 电角度观…

express+mysql+vue,从零搭建一个商城管理系统6--数据校验和登录

提示&#xff1a;学习express&#xff0c;搭建管理系统 文章目录 前言一、修改models/user.js二、修改routes下的user.js三、Api新建user/login接口四、删除数据库原有数据&#xff0c;添加新验证规则的用户四、用户登录总结 前言 需求&#xff1a;主要学习express&#xff0c;…

MacBook将iPad和iPhone备份到移动硬盘

#创作灵感# 一个是ICloud不够用&#xff0c;想备份到本地&#xff1b;然而本地存储不够用&#xff0c;增加容量巨贵&#xff0c;舍不得这个钱&#xff0c;所以就想着能不能备份到移动硬盘。刚好有个移动固态&#xff0c;所以就试了一下&#xff0c;还真可以。 #正文# 说一下逻…

《PyTorch深度学习实践》第八讲加载数据集

一、 1、DataSet 是抽象类&#xff0c;不能实例化对象&#xff0c;主要是用于构造我们的数据集 2、DataLoader 需要获取DataSet提供的索引[i]和len;用来帮助我们加载数据&#xff0c;比如说做shuffle(提高数据集的随机性)&#xff0c;batch_size,能拿出Mini-Batch进行训练。它…

Windows10环境下MongoDB安装配置

1. 下载对应MongoDB安装包 进入官网&#xff1a;MongoDB官网 如果不连接外网则在官网下载较慢&#xff0c;这里给出下载好的安装包&#xff0c;版本为4.2.25&#xff1a;百度网盘 选择你需要的版本&#xff0c;推荐选择Package的格式为zip&#xff08;解压即可&#xff09; Pa…

[VNCTF2024]-PWN:preinit解析(逆向花指令,绕过strcmp,函数修改,机器码)

查看保护&#xff1a; 查看ida&#xff1a; 这边其实看反汇编没啥大作用&#xff0c;需要自己动调。 但是前面的绕过strcmp还是要看一下的。 解题&#xff1a; 这里是用linux自带的产生随机数的文件urandom来产生一个随机密码&#xff0c;然后让我们输入密码&#xff0c;用st…

k8s 存储卷详解与动静部署详解

目录 一、Volume 卷 1.1 卷类型 emptyDir &#xff1a; hostPath&#xff1a; persistentVolumeClaim (PVC)&#xff1a; configMap 和 secret&#xff1a; 二、 emptyDir存储卷 2.1 特点 2.2 用途&#xff1a; 2.3 示例 三、 hostPath存储卷 3.1 特点 3.2 用途 …

前端mock数据 —— 使用Apifox mock页面所需数据

前端mock数据 —— 使用Apifox 一、使用教程二、本地请求Apifox所mock的接口 一、使用教程 在首页进行新建项目&#xff1a; 新建项目名称&#xff1a; 新建接口&#xff1a; 创建json&#xff1a; 请求方法&#xff1a; GET。URL&#xff1a; api/basis。响应类型&#xff1…

Socket网络编程(六)——简易聊天室案例

目录 聊天室数据传输设计客户端、服务器数据交互数据传输协议服务器、多客户端模型客户端如何发送消息到另外一个客户端2个以上设备如何交互数据&#xff1f; 聊天室消息接收实现代码结构client客户端重构server服务端重构自身描述信息的构建重构TCPServer.java基于synchronize…