0、要点
Flink的分区列不会存数据,也就是两个列有一个分区列,则文件只会存另一个列的数据
1、CreateTable
根据SQL的执行流程,进入TableEnvironmentImpl.executeInternal,createTable分支
} else if (operation instanceof CreateTableOperation) {CreateTableOperation createTableOperation = (CreateTableOperation) operation;if (createTableOperation.isTemporary()) {catalogManager.createTemporaryTable(createTableOperation.getCatalogTable(),createTableOperation.getTableIdentifier(),createTableOperation.isIgnoreIfExists());} else {catalogManager.createTable(createTableOperation.getCatalogTable(),createTableOperation.getTableIdentifier(),createTableOperation.isIgnoreIfExists());}return TableResultImpl.TABLE_RESULT_OK;
1.1 GenericInMemoryCatalog
之后调用catalog.createTable,以GenericInMemoryCatalog来说,其中有几个分区的Map,但实际这里并不存储分区信息,可以看到,这里创建的是空表
} else {tables.put(tablePath, table.copy());if (isPartitionedTable(tablePath)) {partitions.put(tablePath, new LinkedHashMap<>());partitionStats.put(tablePath, new LinkedHashMap<>());partitionColumnStats.put(tablePath, new LinkedHashMap<>());}
}
1.2 Catalog中的分区Map
partitionStats和partitionColumnStats是放一些统计信息的,partitions目前看是单独的分区操作时会用到,如createPartition(对应SQL语句ALTER TABLE ADD PARTITION),并且这一块存储的只有Alter语句里修改的partition信息,主要还是一些描述信息,并不是主要用于记录分区,信息来源在SqlToOperationConverter.convertAlterTable当中
for (int i = 0; i < addPartitions.getPartSpecs().size(); i++) {specs.add(new CatalogPartitionSpec(addPartitions.getPartitionKVs(i)));Map<String, String> props =OperationConverterUtils.extractProperties(addPartitions.getPartProps().get(i));partitions.add(new CatalogPartitionImpl(props, null));
}
return new AddPartitionsOperation(tableIdentifier, addPartitions.ifNotExists(), specs, partitions);
1.3 AbstractCatalogTable
真正有用的信息是在table表的信息当中,核心在tables.put(tablePath, table.copy());这一句当中,table.copy()存储了表信息,最终调用到实现类CatalogTableImpl,其父类的构造函数有分区信息。表中存储了相应的分区信息,SQL最终操作的都是表,所以都是从这取的分区信息,注意这是一个StringList
public AbstractCatalogTable(TableSchema tableSchema,List<String> partitionKeys,Map<String, String> options,String comment) {this.tableSchema = checkNotNull(tableSchema, "tableSchema cannot be null");this.partitionKeys = checkNotNull(partitionKeys, "partitionKeys cannot be null");this.options = checkNotNull(options, "options cannot be null");
2、DescribeTable
同样的在ableEnvironmentImpl.executeInternal,describe分支
} else if (operation instanceof DescribeTableOperation) {DescribeTableOperation describeTableOperation = (DescribeTableOperation) operation;Optional<ContextResolvedTable> result =catalogManager.getTable(describeTableOperation.getSqlIdentifier());if (result.isPresent()) {return buildDescribeResult(result.get().getResolvedSchema());} else {throw new ValidationException(String.format("Tables or views with the identifier '%s' doesn't exist",describeTableOperation.getSqlIdentifier().asSummaryString()));}
2.1 获取及解析表
首先这边getTable方法,获取Table,由CatalogManager做入口,正常的表都是走的getPermanentTable
public Optional<ContextResolvedTable> getTable(ObjectIdentifier objectIdentifier) {CatalogBaseTable temporaryTable = temporaryTables.get(objectIdentifier);if (temporaryTable != null) {final ResolvedCatalogBaseTable<?> resolvedTable =resolveCatalogBaseTable(temporaryTable);return Optional.of(ContextResolvedTable.temporary(objectIdentifier, resolvedTable));} else {return getPermanentTable(objectIdentifier);}
}
这里对Table进行了多层封装,最底层的还是来自GenericInMemoryCatalog当中,前面CreateTable的时候有一个tables的Map,这里就是从这个里面拿当时存储的Table类
public CatalogBaseTable getTable(ObjectPath tablePath) throws TableNotExistException {checkNotNull(tablePath);if (!tableExists(tablePath)) {throw new TableNotExistException(getName(), tablePath);} else {return tables.get(tablePath).copy();}
}
返回到最上层前会对这个Table进行解析封装,在CatalogManager.resolveCatalogTable进行解析,这里有一个重要的点就是对分区的校验,必须对应表的列
// Validate partition keys are included in physical columns
final List<String> physicalColumns =resolvedSchema.getColumns().stream().filter(Column::isPhysical).map(Column::getName).collect(Collectors.toList());
table.getPartitionKeys().forEach(partitionKey -> {if (!physicalColumns.contains(partitionKey)) {throw new ValidationException(String.format("Invalid partition key '%s'. A partition key must "+ "reference a physical column in the schema. "+ "Available columns are: %s",partitionKey, physicalColumns));}});
2.2 返回信息
最终构建返回信息,这里有一个关注点就是接口只传入了表的Schema信息,没有传入分区信息
return buildDescribeResult(result.get().getResolvedSchema());
Describe返回控制台是一个表结构的形式,所以这里会构建一个表的格式
private TableResultInternal buildDescribeResult(ResolvedSchema schema) {Object[][] rows = buildTableColumns(schema);return buildResult(generateTableColumnsNames(), generateTableColumnsDataTypes(), rows);
}
buildTableColumns是把Shema信息构建成行数据,因为Describe输出的表是有固定字段的,所以这里要对应固定字段填值
具体的列名在generateTableColumnsNames当中指定,这个也是最后返回信息里的表头
private String[] generateTableColumnsNames() {return new String[] {"name", "type", "null", "key", "extras", "watermark"};
}
generateTableColumnsDataTypes设置上面几个列的字段类型
private DataType[] generateTableColumnsDataTypes() {return new DataType[] {DataTypes.STRING(),DataTypes.STRING(),DataTypes.BOOLEAN(),DataTypes.STRING(),DataTypes.STRING(),DataTypes.STRING()};
}
最终把Shema构建的行信息插入表中就构成了返回信息,是一个TableResultImpl的类型
private TableResultInternal buildResult(String[] headers, DataType[] types, Object[][] rows) {ResolvedSchema schema = ResolvedSchema.physical(headers, types);ResultProvider provider =new StaticResultProvider(Arrays.stream(rows).map(Row::of).collect(Collectors.toList()));return TableResultImpl.builder().resultKind(ResultKind.SUCCESS_WITH_CONTENT).schema(ResolvedSchema.physical(headers, types)).resultProvider(provider).setPrintStyle(PrintStyle.tableauWithDataInferredColumnWidths(schema,provider.getRowDataStringConverter(),Integer.MAX_VALUE,true,false)).build();
}
整体的输出形态如下
±--------±-------±-----±----±-------±----------+
| name | type | null | key | extras | watermark |
±--------±-------±-----±----±-------±----------+
| user | BIGINT | TRUE | | | |
| product | STRING | TRUE | | | |
±--------±-------±-----±----±-------±----------+
3、Insert
3.1 封装SinkModifyOperation
首先是封装SinkModifyOperation的时候,其中有表,在SqlToOperationConverter.convertSqlInsert当中,getTableOrError最终调用的跟前面describe获取表一样,从Catalog拿表并且对分区进行校验,这些步骤都不少,所以SinkModifyOperation里封装的contextResolvedTable是带分区信息的
ContextResolvedTable contextResolvedTable = catalogManager.getTableOrError(identifier);return new SinkModifyOperation(contextResolvedTable,query,insert.getStaticPartitionKVs(),insert.isOverwrite(),dynamicOptions);
3.2 转TableSink
在SQL转换流程的PlannerBase.translateToRel当中,走catalogSink分支,在getTableSink接口调用时,走到TableFactoryUtil.findAndCreateTableSink
public static <T> TableSink<T> findAndCreateTableSink(TableSinkFactory.Context context) {try {return TableFactoryService.find(TableSinkFactory.class, context.getTable().toProperties()).createTableSink(context);} catch (Throwable t) {throw new TableException("findAndCreateTableSink failed.", t);}
}
这里在toProperties接口当中,会把分区传入成为一项Property
public Map<String, String> toProperties() {DescriptorProperties descriptor = new DescriptorProperties(false);descriptor.putTableSchema(SCHEMA, getSchema());descriptor.putPartitionKeys(getPartitionKeys());Map<String, String> properties = new HashMap<>(getOptions());descriptor.putProperties(properties);return descriptor.asMap();
}
在下一步的createTableSink接口调用的时候,也会调用到toProperties,但目前这个好像只有CSV的两个实现类,所以TableSink的具体过程待研究
getTableSink最后调用的是createDynamicTableSink,这里面封装了table,就是跟前面一样的从catalog拿的表,所以这个表是包含分区信息的
val tableSink = FactoryUtil.createDynamicTableSink(factory,objectIdentifier,tableToFind,Collections.emptyMap(),getTableConfig,getFlinkContext.getClassLoader,isTemporary)
3.3 分区分配
从文件数据源追踪下去,有一个分区分配器的类PartitionComputer,在fileconnector当中,有四个实现类,分别是file和hive的
Sink在SQL转换的时候调用translateToPlanInternal,有构建SinkRuntimeProvider的流程,在CommonExecSink.createSinkTransformation
final SinkRuntimeProvider runtimeProvider =tableSink.getSinkRuntimeProvider(new SinkRuntimeProviderContext(isBounded));
在FileSystemTableSink当中,最终构建了分区计算器
private DataStreamSink<RowData> createBatchSink(DataStream<RowData> inputStream, Context sinkContext, final int parallelism) {FileSystemOutputFormat.Builder<RowData> builder = new FileSystemOutputFormat.Builder<>();builder.setPartitionComputer(partitionComputer());private RowDataPartitionComputer partitionComputer() {return new RowDataPartitionComputer(defaultPartName,DataType.getFieldNames(physicalRowDataType).toArray(new String[0]),DataType.getFieldDataTypes(physicalRowDataType).toArray(new DataType[0]),partitionKeys.toArray(new String[0]));
}
在这里面,会根据分区列名生成分区index用作后续使用,也就是必须跟列有对应关系,不过计算分区的时候还是用分区名的List
this.partitionIndexes =Arrays.stream(partitionColumns).mapToInt(columnList::indexOf).toArray();
this.partitionTypes =Arrays.stream(partitionIndexes).mapToObj(columnTypeList::get).toArray(LogicalType[]::new);
this.partitionFieldGetters =IntStream.range(0, partitionTypes.length).mapToObj(i ->RowData.createFieldGetter(partitionTypes[i], partitionIndexes[i])).toArray(RowData.FieldGetter[]::new);List<Integer> partitionIndexList =Arrays.stream(partitionIndexes).boxed().collect(Collectors.toList());
generatePartValues会计算数据的分区,基于前面RowDataPartitionComputer初始化时基于分区构建的各种对象进行计算
public LinkedHashMap<String, String> generatePartValues(RowData in) {LinkedHashMap<String, String> partSpec = new LinkedHashMap<>();for (int i = 0; i < partitionIndexes.length; i++) {Object field = partitionFieldGetters[i].getFieldOrNull(in);String partitionValue = field != null ? field.toString() : null;if (partitionValue == null || "".equals(partitionValue)) {partitionValue = defaultPartValue;}partSpec.put(partitionColumns[i], partitionValue);}return partSpec;
}
FileSystemTableSink最下层写的实现类是GroupedPartitionWriter和DynamicPartitionWriter,GroupedPartitionWriter的write如下
public void write(T in) throws Exception {String partition = generatePartitionPath(computer.generatePartValues(in));if (!partition.equals(currentPartition)) {if (currentFormat != null) {currentFormat.close();}currentFormat = context.createNewOutputFormat(manager.createPartitionDir(partition));currentPartition = partition;}currentFormat.writeRecord(computer.projectColumnsToWrite(in));
}
3.4 分区列不写数据
RowDataPartitionComputer.projectColumnsToWrite计算需要写数据的列,也就是说只要这几列会写数据,核心就是去除分区列
for (int i = 0; i < nonPartitionIndexes.length; i++) {reuseRow.setField(i, nonPartitionFieldGetters[i].getFieldOrNull(in));
}
reuseRow.setRowKind(in.getRowKind());
return reuseRow;
nonPartitionIndexes在构建RowDataPartitionComputer,可以看到,就是遍历列名,然后去除分区列
this.nonPartitionIndexes =IntStream.range(0, columnNames.length).filter(c -> !partitionIndexList.contains(c)).toArray();
3.5 分区目录
在PartitionPathUtils.generatePartitionPath当中定义了分区目录的形式,以{列名=分区值的形式},因为目前key就是列名
for (Map.Entry<String, String> e : partitionSpec.entrySet()) {if (i > 0) {suffixBuf.append(Path.SEPARATOR);}suffixBuf.append(escapePathName(e.getKey()));suffixBuf.append('=');suffixBuf.append(escapePathName(e.getValue()));i++;
}
4、Select
参照Sink的流程,在CommonExecTableSourceScan.translateToPlanInternal有构建Source的流程
final ScanTableSource tableSource =tableSourceSpec.getScanTableSource(planner.getFlinkContext());
ScanTableSource.ScanRuntimeProvider provider =tableSource.getScanRuntimeProvider(ScanRuntimeProviderContext.INSTANCE);
4.1 getScanTableSource
在getScanTableSource接口当中,由createDynamicTableSource创建TableSource
tableSource =FactoryUtil.createDynamicTableSource(factory,contextResolvedTable.getIdentifier(),contextResolvedTable.getResolvedTable(),loadOptionsFromCatalogTable(contextResolvedTable, flinkContext),flinkContext.getTableConfig(),flinkContext.getClassLoader(),contextResolvedTable.isTemporary());
以FileSystemTableFactory为例,最终创建FileSystemTableSource,其中传入的参数就有分区信息,分区信息同样是来自Catalog的表
public DynamicTableSource createDynamicTableSource(Context context) {FactoryUtil.TableFactoryHelper helper = FactoryUtil.createTableFactoryHelper(this, context);validate(helper);return new FileSystemTableSource(context.getObjectIdentifier(),context.getPhysicalRowDataType(),context.getCatalogTable().getPartitionKeys(),helper.getOptions(),discoverDecodingFormat(context, BulkReaderFormatFactory.class),discoverDecodingFormat(context, DeserializationFormatFactory.class));
}
4.2 getScanRuntimeProvider
之后进行provider创建,是基于上面的FileSystemTableSource进行的调用,最终到它的getScanRuntimeProvider接口当中,内部有很多跟分区相关的操作
首先是无分区就返回一个默认简单的类
// When this table has no partition, just return an empty source.
if (!partitionKeys.isEmpty() && getOrFetchPartitions().isEmpty()) {return InputFormatProvider.of(new CollectionInputFormat<>(new ArrayList<>(), null));
}
后续又是用表的列字段对分区进行过滤
// Filter out partition columns not in producedDataType
final List<String> partitionKeysToExtract =DataType.getFieldNames(producedDataType).stream().filter(this.partitionKeys::contains).collect(Collectors.toList());
后续这个过滤过的分区会被传入format,format是Flink最后执行读写的类(但是这里有些传了有些没传,需要看一下差别)
format虽然不一样,但是最终都是调用的return createSourceProvider(format);,在createSourceProvider当中有获取分区的操作(不是分区key,是分区值)
private SourceProvider createSourceProvider(BulkFormat<RowData, FileSourceSplit> bulkFormat) {final FileSource.FileSourceBuilder<RowData> fileSourceBuilder =FileSource.forBulkFileFormat(bulkFormat, paths());
这里的paths()就是基于remainingPartitions获取要读取的分区目录
private Path[] paths() {if (partitionKeys.isEmpty()) {return new Path[] {path};} else {return getOrFetchPartitions().stream().map(FileSystemTableSource.this::toFullLinkedPartSpec).map(PartitionPathUtils::generatePartitionPath).map(n -> new Path(path, n)).toArray(Path[]::new);}
}
4.3 remainingPartitions
这个是分区下推使用的一个东西,当支持分区下推时,就会把这个值设置为分区,在PartitionPushDownSpec的apply当中
这个不是存储的分区列,而是实际的分区值
public void apply(DynamicTableSource tableSource, SourceAbilityContext context) {if (tableSource instanceof SupportsPartitionPushDown) {((SupportsPartitionPushDown) tableSource).applyPartitions(partitions);} else {throw new TableException(String.format("%s does not support SupportsPartitionPushDown.",tableSource.getClass().getName()));}
}
这里applyPartitions就是设置remainingPartitions的
public void applyPartitions(List<Map<String, String>> remainingPartitions) {this.remainingPartitions = remainingPartitions;
}
还有其他的地方会进行设置,在getOrFetchPartitions当中
private List<Map<String, String>> getOrFetchPartitions() {if (remainingPartitions == null) {remainingPartitions = listPartitions().get();}return remainingPartitions;
}
这里listPartitions就是去数据目录扫描分区
public Optional<List<Map<String, String>>> listPartitions() {try {return Optional.of(PartitionPathUtils.searchPartSpecAndPaths(path.getFileSystem(), path, partitionKeys.size()).stream().map(tuple2 -> tuple2.f0).map(spec -> {LinkedHashMap<String, String> ret = new LinkedHashMap<>();spec.forEach((k, v) ->ret.put(k,defaultPartName.equals(v)? null: v));return ret;}).collect(Collectors.toList()));} catch (Exception e) {throw new TableException("Fetch partitions fail.", e);}
}
5、分区下推
能力由PartitionPushDownSpec决定,规则是PushPartitionIntoTableSourceScanRule
分区信息同样的从catalog中的table上获取
List<String> partitionFieldNames =tableSourceTable.contextResolvedTable().<ResolvedCatalogTable>getResolvedTable().getPartitionKeys();
之后从过滤条件中提取分区相关的条件
// extract partition predicates
RelBuilder relBuilder = call.builder();
RexBuilder rexBuilder = relBuilder.getRexBuilder();
Tuple2<Seq<RexNode>, Seq<RexNode>> allPredicates =RexNodeExtractor.extractPartitionPredicateList(filter.getCondition(),FlinkRelOptUtil.getMaxCnfNodeCount(scan),inputFieldNames.toArray(new String[0]),rexBuilder,partitionFieldNames.toArray(new String[0]));
RexNode partitionPredicate =RexUtil.composeConjunction(rexBuilder, JavaConversions.seqAsJavaList(allPredicates._1));
之后获取分区列类型,这里又是从分区列获取的
// build pruner
LogicalType[] partitionFieldTypes =partitionFieldNames.stream().map(name -> {int index = inputFieldNames.indexOf(name);if (index < 0) {throw new TableException(String.format("Partitioned key '%s' isn't found in input columns. "+ "Validator should have checked that.",name));}return inputFieldTypes.getFieldList().get(index).getType();}).map(FlinkTypeFactory::toLogicalType).toArray(LogicalType[]::new);
后续会进行分区过滤,这里就会生成上面的remainingPartitions,获取首先是调用TableSource的listPartitions,如果能直接获取到就用它的值,获取不到会进行一个获取逻辑处理readPartitionFromCatalogAndPrune,这里要注意分区条件已经被转换成了RexNode形态,最终过滤还是基于catalog,目前看只有HiveCatalog有处理逻辑
return catalog.listPartitionsByFilter(tablePath, partitionFilters).stream().map(CatalogPartitionSpec::getPartitionSpec).collect(Collectors.toList());
之后,会基于上面的分区过滤,构建新的TableSourceTable,替换其中的tableStats
FlinkStatistic newStatistic =FlinkStatistic.builder().statistic(tableSourceTable.getStatistic()).tableStats(newTableStat).build();TableSourceTable newTableSourceTable =tableSourceTable.copy(dynamicTableSource,newStatistic,new SourceAbilitySpec[] {partitionPushDownSpec});LogicalTableScan newScan =LogicalTableScan.create(scan.getCluster(), newTableSourceTable, scan.getHints());