[数据结构 C++] AVL树的模拟实现

在这里插入图片描述

文章目录

  • 1、AVL树
    • 1.1 AVL树的概念
  • 2、AVL树节点的定义
  • 3、AVL树的插入和旋转
    • 3.1 左单旋
      • 左旋代码实现
    • 3.2 右单旋
      • 右旋代码实现
    • 3.3 右左双旋
      • 右左双旋的代码实现
    • 3.4 左右双旋
      • 左右双旋的代码实现
    • 3.5 insert接口实现
  • 4、判断是否为AVL树
    • 判断AVL树的代码实现
  • 5、AVL树的性能

问题引入:
在上一篇文章中,我们提到了二叉搜索树在插入时,可能会形成单边树,会降低二叉搜索的性能。因此我们需要平衡二叉搜索树,降低二叉搜索树的高度,使得二叉搜索树趋于一颗完全二叉树的样子,这样就可以提高二叉搜索树的性能。本篇文章就来介绍一种平衡二叉树,AVL树。
在这里插入图片描述

1、AVL树

1.1 AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
    在这里插入图片描述
    如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(log N),搜索时间复杂度O(log N)。
    我们了解了AVL树的基本规则后,下面我们来实现一下AVL树。

2、AVL树节点的定义

template <class K, class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;pair<K, V> _kv;// 右子树 - 左子树 的高度差int _bf; // 平衡因子AVLTreeNode(const pair<K, V>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_bf(0){}
};

3、AVL树的插入和旋转

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子

当某个节点的平衡因子被修改为2的时候,就需要旋转来调节,因此就存在一下四种旋转方式:

3.1 左单旋

我们将 左单旋的情况抽象出来,如下图所示:
在这里插入图片描述

当 h >= 0,且parent->_bf == 2 && subR->_bf == 1时,触发左旋。
在这个图中,只能是在 c 子树新增,才能触发左旋的条件parent->_bf == 2 && subR->_bf == 1。此时进行左旋。
如果是在 b 子树新增,那么仅仅左旋是不够的,
旋转步骤:将60的左树变为30的右树,将60的左树变为30,最后将parent和subR的平衡因子变为0就完成了左旋。

左旋代码实现

// 左单旋
void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;Node* parentParent = parent->_parent;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;parent->_parent = subR;if (_root == parent) // 父节点就是根节点{_root = subR;subR->_parent = nullptr;}else // 子树情况{if (parentParent->_left == parent){parentParent->_left = subR;}else{parentParent->_right = subR;}subR->_parent = parentParent;}// 修改平衡因子parent->_bf = subR->_bf = 0;
}

3.2 右单旋

我们将 右单旋的情况抽象出来,如下图所示:
在这里插入图片描述
当 h >= 0,且 parent->_bf == 2 && subL->_bf == -1时,触发右旋。
在这个图中,只能是在 a子树新增,才能触发右旋的条件parent->_bf == -2 && subL->_bf == -1。此时进行右旋。
如果是在 b 子树新增,那么仅仅右旋是不够的。
旋转步骤:将30的右树接到60的左树并断开与30的链接,再将60接到30的右树,并将60的父节点改为3,最后再调整parent与SubL的平衡因子为0,就完成整个右旋。

右旋代码实现

// 右单旋
void RotateR(Node* parent)
{Node* parentParent = parent->_parent;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;parent->_parent = subL;if (_root == parent) // 父节点是根节点{_root = subL;subL->_parent = nullptr;}else // 子树情况{if (parentParent->_left == parent){parentParent->_left = subL;}else{parentParent->_right = subL;}subL->_parent = parentParent;}// 修改平衡因子parent->_bf = subL->_bf = 0;
}

3.3 右左双旋

我们将 右左双旋的所有情况抽象出来,如下图所示:
在这里插入图片描述

右左双旋的本质是先将子树右旋,让右侧一侧高,再进行整体的左旋,这样就完成了高度的调整。
双旋的插入位置可以是 b/c 子树,此类型插入之后就会触发右左双旋。
旋转步骤:直接复用右旋,再复用左旋即可。不过旋转的基点不同,右旋是以subR为基点,左旋是以parent为基点旋转的。旋转就完成了,难点在于平衡因子的调节。
平衡因子的调节:
这里主要是 记下subRL最初的平衡因子它的平衡因子就代表了插入节点是在subRL的左边还是右边插入的,由此可以推出最终的parent与subR的平衡因子。

  • 当subRL->_bf = 1时,最后parent->_bf = -1,subR->_bf = 0,subRL->_bf = 0;
  • 当subRL->_bf = -1时,最后parent->_bf = 0,subR->_bf = 1,subRL->_bf = 0;
  • 当subRL->_bf = 0时,最后parent->_bf = 0,subR->_bf = 0,subRL->_bf = 0;

右左双旋的代码实现

// 右左双旋
void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(subR);RotateL(parent);if (bf == 0) // subRL 就是插入的{parent->_bf = subR->_bf = subRL->_bf = 0;}else if (bf == 1) // subRL 右边边插入{parent->_bf = -1;subR->_bf = 0;subRL->_bf = 0;}else if (bf == -1) // subRL 左边插入{parent->_bf = 0;subR->_bf = 1;subRL->_bf = 0;}else{assert(false);}
}

3.4 左右双旋

我们将 右左双旋的所有情况抽象出来,如下图所示:
在这里插入图片描述

左右双旋与右左双旋的思路是差不多的,我们来看看。
左右双旋的本质是先将子树左旋,让左侧一侧高,在进行整体的右旋,这样就完成了高度的调整。
双旋的插入位置可以是 b/c 子树,此类型插入之后就会触发左右双旋。
旋转步骤:直接复用左旋,再复用右旋即可。不过旋转的基点不同,右旋是以subR为基点,左旋是以parent为基点旋转的。旋转就完成了,难点也是在于平衡因子的调节。
平衡因子的调节:
这里主要是 记下subLR最初的平衡因子它的平衡因子就代表了插入节点是在subLR的左边还是右边插入的,由此可以推出最终的parent与subL的平衡因子。

  • 当subLR->_bf = 1时,最后parent->_bf = 1,subL->_bf = 0,subLR->_bf = 0;
  • 当subLR->_bf = 1时,最后parent->_bf = 0,subL->_bf = -1,subLR->_bf = 0;
  • 当subLR->_bf = 0时,最后parent->_bf = 0,subL->_bf = 0,subLR->_bf = 0;

左右双旋的代码实现

// 左右双旋
void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(subL);RotateR(parent);if (0 == bf){parent->_bf = subL->_bf = subLR->_bf = 0;}else if (1 == bf){parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else if (-1 == bf){parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else{assert(false);}
}

3.5 insert接口实现

bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;// 1、先找到插入的位置while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}// 2、new一个节点,并与parent链接起来cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}// 3、调平横 —— 旋转 + 平衡因子的调节while (parent){if (parent->_left == cur){parent->_bf--;}else{parent->_bf++;}if (0 == parent->_bf){break;}else if (parent->_bf == -1 || parent->_bf == 1){cur = parent;parent = parent->_parent;}else if (parent->_bf == -2 || parent->_bf == 2){if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}// 1、旋转让这颗子树平衡了// 2、旋转降低了这颗子树的高度,恢复到跟插入前一样的高度,所以对上一层没有影响,不用继续更新break;}else{assert(false);}}return true;
}

4、判断是否为AVL树

AVL树的本质是搜索二叉树 + 平衡机制,所以验证步骤:
1、首先判断是否为搜索树,写一个中序遍历,看看是不是升序即可;
2、按照AVL树的性质来判断:

  • 每个节点的左右子树高度差绝对值小于等于1;
  • 节点的平衡因子是否正确;

判断AVL树的代码实现

bool _IsBalance(Node* pRoot)
{if (pRoot == nullptr)return true;int leftHeight = _Height(pRoot->_left);int rightHeight = _Height(pRoot->_right);if (rightHeight - leftHeight != pRoot->_bf){cout << pRoot->_kv.first << "平衡因子异常" << endl;return false;}return rightHeight - leftHeight < 2&& _IsAVLTree(pRoot->_left)&& _IsAVLTree(pRoot->_right);
}size_t _Height(Node* pRoot)
{if (pRoot == nullptr)return 0;int leftHeight = _Height(pRoot->_left);int rightHeight = _Height(pRoot->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}void _InOrder(Node* pRoot)
{if (pRoot == nullptr)return;_InOrder(pRoot->_left);cout << pRoot->_kv.first << " ";_InOrder(pRoot->_right);
}

5、AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即O(log N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。
AVL树的实现代码放在代码仓库:https://gitee.com/xiaobai-is-working-hard-jy/data-structure/tree/master/AVLTree

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/710224.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

刷题第3天(简单题):LeetCode203--移除链表元素--虚拟头结点

LeetCode203:给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回 新的头节点 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,6,3,4,5,6], val 6 输出&#xff1a;[1,2,3,4,5]示例 2&#xff1a;输入…

面试数据库篇(mysql)- 07索引创建原则与失效及优化

索引创建原则 1). 针对于数据量较大,且查询比较频繁的表建立索引。 2). 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引。 3). 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。 4). 如果是字符…

flink下载安装部署说明

下载 下载地址 flink-1.16.2下载安装包&#xff0c;flink-1.16.2-bin-scala-2.12.zip资源-CSDN文库 安装 解压目录 启动集群 ./start-cluster.sh 提交作业 ./bin/flink run examples/streaming/WordCount.jar 查看日志 停止集群 ./bin/stop-cluster.sh 开启webui vim c…

数据结构与算法 - 数组与二分查找 + Leetcode典型题

1. 什么是数组 数组是存放在连续内存空间上的相同类型数据的集合。 数组可以方便的通过下标索引的方式获取到下标下对应的数据。 C中二维数组在地址空间上也是连续的。 需注意&#xff1a; 数组的下标从0开始。数组内存空间的地址是连续的。数组的元素是不能删的&#xff0c…

【HDFS】Decommision(退役) EC数据节点剩最后几个块卡住的问题

一、背景 近期操作退役EC集群的节点。在退役的过程中,遇到了一些问题。特此总结一下。 本文描述的问题现象是: 每一批次退役10个节点,完全退役成功后开始操作下一批。 但是,中间有一批次有2台节点的Under Replicated Blocks一直是1,不往下降。 处于Decommissioning状态卡…

鸿蒙OpenHarmony多线程能力场景化示例实践

简介 在OpenHarmony应用中&#xff0c;每个 进程 都会有一个主线程&#xff0c;主线程主要承担执行UI绘制操作、管理ArkTS引擎实例的创建和销毁、分发和处理事件、管理Ability生命周期等职责&#xff0c;具体可参见 线程模型概述 。因此&#xff0c;开发应用时应当尽量避免将耗…

Sora技术原理解析

1.Sora简介 Sora是一个基于大规模训练的文本控制视频生成扩散模型。 Sora能够生成高达1分钟的高清视频&#xff0c;涵盖广泛的视觉数据类型和分辨率。 Sora使用简单的文本描述&#xff0c;使得视频创作变得前所未有的简单和高效。 Sora的一些能力&#xff1a; Text-to-video…

windows server mysql 数据库停止 备份 恢复全流程操作方法

一,mysql备份 mysql最好是原工程文件备份.不需要sql查询的方式备份.安全高效. 比如,安装php与mysql组合后,我的mysql文件保存在: D:\phpstudy_pro\Extensions\MySQL5.7.26\data\dux 我只需要复制一份,保存起来就行. 二,mysql恢复 怎么恢复呢.我们一般是只恢复其中一个表,则找…

一个具有强大PDF处理能力的.Net开源项目

PDF具有跨平台、可读性强、不可修改性、无需特定阅读软件、内容安全等好处&#xff0c;在工作中经常都会用到。 所以&#xff0c;我们在项目开发中&#xff0c;经常需要生成PDF的文件&#xff0c;或者把Html、Xml等文件转化为PDF格式。 今天给大家推荐一个具有PDF处理能力的.…

优思学院|质量工程师需要学习什么软件?

初入职质量工程师的朋友常常会问&#xff1a;质量工程师需要学习什么软件&#xff1f;在质量控制和管理的世界里&#xff0c;拥有强大的数据分析工具是走向成功的关键&#xff0c;因此&#xff0c;对于质量工程师来说&#xff0c;掌握正确的软件不仅能提升工作效率&#xff0c;…

lv20 QT对话框3

1 内置对话框 标准对话框样式 内置对话框基类 QColorDialog, QErrorMessage QFileDialog QFontDialog QInputDialog QMessageBox QProgressDialogQDialog Class帮助文档 示例&#xff1a;各按钮激发对话框实现基类提供的各效果 第一步&#xff1a;实现组件布局&…

Pyhton的组合数据类型

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 生命对某些人来说是美丽的&#xff0c…

尝鲜18倍速大模型Groq和世界第二AI Mistral(Le Chat)

01 尝鲜 中午,一边吃饭,一边尝试一下最新的AI:Groq,它使用了重新设计的LPU,据说比英伟达的GPU快了18倍。 运行了开源的Mixtral-8x7b模型,屏幕上的文字回复几乎是瞬间的,那种速度感,让人心跳加速。 接着,我尝试了来自欧洲的新贵——Mistral AI的Le Chat。 这个三天前…

python学习笔记-内置异常

概述 Python 中的异常&#xff08;Exception&#xff09;是指在程序执行过程中遇到的错误或异常情况。当程序出现异常时&#xff0c;解释器会停止当前代码的执行&#xff0c;并试图找到匹配的异常处理器来处理异常。如果没有找到合适的异常处理器&#xff0c;程序就会终止并打…

go并发模式之----阻塞/屏障模式

常见模式之一&#xff1a;阻塞/屏障模式 定义 顾名思义&#xff0c;就是阻塞等待所有goroutine&#xff0c;直到所有goroutine完成&#xff0c;聚合所有结果 使用场景 多个网络请求&#xff0c;聚合结果 大任务拆分成多个子任务&#xff0c;聚合结果 示例 package main ​…

配电房轨道式巡检机器人方案

一、应用背景 在变电站、配电房、开关站等各种室内变配电场所内&#xff0c;由于变配电设备的数量众多、可能存在各类安全隐患&#xff0c;为了保证用电的安全可靠&#xff0c;都要进行日常巡检。 但目前配电房人工巡检方式有以下主要问题&#xff1a; 巡检工作量大、成本高 …

关于StartAI本地部署相关问题解答

很多小伙伴们都有接入自己本地SD的需求&#xff0c;对此小编整理了一些相关问题~ 一、本地部署相关条件 对于想要本地部署的小伙伴要了解&#xff0c;相对于使用StartAI试用引擎本地部署更加考验电脑硬件配置备噢~ 流畅使用要nvidia显卡&#xff0c;6g以上显存&#xff08;最…

图解知识蒸馏

soft labels与soft predictions越接近越好&#xff0c;通过Loss Fn来实现&#xff0c;产生的数值叫做distillation loss&#xff0c;也叫soft loss。 hard label y与hard prediction越接近越好&#xff0c;通过Loss Fn来实现&#xff0c;产生的数值叫做student loss&#xff0c…

什么是VR虚拟现实元宇宙|VR设备购买|VR设备零售店

VR&#xff08;Virtual Reality&#xff0c;虚拟现实&#xff09;元宇宙是指基于虚拟现实技术构建的一个虚拟世界&#xff0c;这个世界可以模拟现实世界或者超出现实世界的一切事物和活动。在这个虚拟世界里&#xff0c;用户可以通过虚拟现实设备&#xff08;如头戴式显示器、手…

本地搭建xss平台并获取cookie演练

前言 一般而言&#xff0c;搭建xss平台是不被允许的&#xff0c;但是由于教育的目的&#xff0c;搭建xss平台更能让学习者更加直观感受xss漏洞对我们的危害和它的重要性。 搭建xss平台 1.搭建xss平台的基础是在phpstudy一个集成环境上的&#xff0c;所有第一步要安装phpstudy&a…