javaee教程郑阿奇课后答案,三年经验月薪50k我是怎么做到的

个人背景

如标题所示,我的个人背景非常简单,Java开发经验1年半,学历普通,2本本科毕业,毕业后出来就一直在Crud,在公司每天重复的工作对我的技术提升并没有什么帮助,但小镇出来的我也深知自我努力的重要性,想要改变“命运”,没有背景没有资本的人,只能通过勤奋获得。

幸运女神往往会眷顾努力的人,所以当好运降临到我头上,我并不诧异,目前拿到了美团30K的offer,下文也不说废话,主要分享我这次“美团面试经历”和“个人学习方法”,希望能帮助到你们。

1年半经验,2本学历,Curd背景,竟给30K,我的美团Offer终于来了

1. 面试官:工作中使用过Zookeeper嘛?你知道它是什么,有什么用途呢?

小菜鸡的我:

  • 有使用过的,使用ZooKeeper作为dubbo的注册中心,使用ZooKeeper实现分布式锁
  • ZooKeeper,它是一个开放源码的分布式协调服务,它是一个集群的管理者,它将简单易用的接口提供给用户。
  • 可以基于Zookeeper 实现诸如数据发布/订阅、负载均衡、命名服务、分布式协调/通知、集群管理、Master 选举、分布式锁和分布式队列等功能
  • Zookeeper的用途:命名服务、配置管理、集群管理、分布式锁、队列管理

用途跟功能不是一个意思咩?

2. 面试官:说下什么是命名服务,什么是配置管理,又什么是集群管理吧

小菜鸡的我(幸好我刷过面试题),无所畏惧

  • 命名服务就是

    命名服务是指通过指定的名字来获取资源或者服务地址。Zookeeper可以创建一个全局唯一的路径,这个路径就可以作为一个名字。被命名的实体可以是集群中的机器,服务的地址,或者是远程的对象等。一些分布式服务框架(RPC、RMI)中的服务地址列表,通过使用命名服务,客户端应用能够根据特定的名字来获取资源的实体、服务地址和提供者信息等。

  • 配置管理:

    实际项目开发中,我们经常使用.properties或者xml需要配置很多信息,如数据库连接信息、fps地址端口等等。因为你的程序一般是分布式部署在不同的机器上(如果你是单机应用当我没说),如果把程序的这些配置信息保存在zk的znode节点下,当你要修改配置,即znode会发生变化时,可以通过改变zk中某个目录节点的内容,利用watcher通知给各个客户端,从而更改配置。

  • 集群管理

    集群管理包括集群监控和集群控制,其实就是监控集群机器状态,剔除机器和加入机器。zookeeper可以方便集群机器的管理,它可以实时监控znode节点的变化,一旦发现有机器挂了,该机器就会与zk断开连接,对用的临时目录节点会被删除,其他所有机器都收到通知。新机器加入也是类似酱紫,所有机器收到通知:有新兄弟目录加入啦。

3. 面试官:你提到了znode节点,那你知道znode有几种类型呢?zookeeper的数据模型是怎样的呢?

小菜鸡的我(我先想想):

zookeeper的数据模型

ZooKeeper的视图数据结构,很像Unix文件系统,也是树状的,这样可以确定每个路径都是唯一的。zookeeper的节点统一叫做znode,它是可以通过路径来标识,结构图如下:

znode的4种类型

根据节点的生命周期,znode可以分为4种类型,分别是持久节点(PERSISTENT)、持久顺序节点(PERSISTENT_SEQUENTIAL)、临时节点(EPHEMERAL)、临时顺序节点(EPHEMERAL_SEQUENTIAL)

  • 持久节点(PERSISTENT)

    这类节点被创建后,就会一直存在于Zk服务器上。直到手动删除。

  • 持久顺序节点(PERSISTENT_SEQUENTIAL)

    它的基本特性同持久节点,不同在于增加了顺序性。父节点会维护一个自增整性数字,用于子节点的创建的先后顺序。

  • 临时节点(EPHEMERAL)

    临时节点的生命周期与客户端的会话绑定,一旦客户端会话失效(非TCP连接断开),那么这个节点就会被自动清理掉。zk规定临时节点只能作为叶子节点。

  • 临时顺序节点(EPHEMERAL_SEQUENTIAL)

    基本特性同临时节点,添加了顺序的特性。

4、面试官:你知道znode节点里面存储的是什么吗?每个节点的数据最大不能超过多少呢?

小菜鸡的我:

znode节点里面存储的是什么?

Znode数据节点的代码如下

public class DataNode implements Record {byte data[];                    Long acl;                       public StatPersisted stat;       private Set<String> children = null; 
}

哈哈,Znode包含了存储数据、访问权限、子节点引用、节点状态信息,如图:

  • data: znode存储的业务数据信息
  • ACL: 记录客户端对znode节点的访问权限,如IP等。
  • child: 当前节点的子节点引用
  • stat: 包含Znode节点的状态信息,比如事务id、版本号、时间戳等等。
每个节点的数据最大不能超过多少呢

为了保证高吞吐和低延迟,以及数据的一致性,znode只适合存储非常小的数据,不能超过1M,最好都小于1K。

5、面试官:你知道znode节点上的监听机制嘛?讲下Zookeeper watch机制吧。

小菜鸡的我:

  • Watcher机制
  • 监听机制的工作原理
  • Watcher特性总结
Watcher监听机制

Zookeeper 允许客户端向服务端的某个Znode注册一个Watcher监听,当服务端的一些指定事件触发了这个Watcher,服务端会向指定客户端发送一个事件通知来实现分布式的通知功能,然后客户端根据 Watcher通知状态和事件类型做出业务上的改变。

可以把Watcher理解成客户端注册在某个Znode上的触发器,当这个Znode节点发生变化时(增删改查),就会触发Znode对应的注册事件,注册的客户端就会收到异步通知,然后做出业务的改变。

Watcher监听机制的工作原理

  • ZooKeeper的Watcher机制主要包括客户端线程、客户端 WatcherManager、Zookeeper服务器三部分。
  • 客户端向ZooKeeper服务器注册Watcher的同时,会将Watcher对象存储在客户端的WatchManager中。
  • 当zookeeper服务器触发watcher事件后,会向客户端发送通知, 客户端线程从 WatcherManager 中取出对应的 Watcher 对象来执行回调逻辑。
Watcher特性总结
  • **一次性:**一个Watch事件是一个一次性的触发器。一次性触发,客户端只会收到一次这样的信息。
  • 异步的: Zookeeper服务器发送watcher的通知事件到客户端是异步的,不能期望能够监控到节点每次的变化,Zookeeper只能保证最终的一致性,而无法保证强一致性。
  • 轻量级: Watcher 通知非常简单,它只是通知发生了事件,而不会传递事件对象内容。
  • 客户端串行: 执行客户端 Watcher 回调的过程是一个串行同步的过程。
  • 注册 watcher用getData、exists、getChildren方法
  • 触发 watcher用create、delete、setData方法

6、面试官:你对Zookeeper的数据结构都有一定了解,那你讲下Zookeeper的特性吧

小菜鸡的我:(我背过书,啊哈哈)

Zookeeper 保证了如下分布式一致性特性:

  • 顺序一致性:从同一客户端发起的事务请求,最终将会严格地按照顺序被应用到 ZooKeeper 中去。
  • 原子性:所有事务请求的处理结果在整个集群中所有机器上的应用情况是一致的,也就是说,要么整个集群中所有的机器都成功应用了某一个事务,要么都没有应用。
  • 单一视图:无论客户端连到哪一个 ZooKeeper 服务器上,其看到的服务端数据模型都是一致的。
  • 可靠性: 一旦服务端成功地应用了一个事务,并完成对客户端的响应,那么该事务所引起的服务端状态变更将会被一直保留下来。
  • 实时性(最终一致性): Zookeeper 仅仅能保证在一定的时间段内,客户端最终一定能够从服务端上读取到最新的数据状态。

7、面试官:你刚提到顺序一致性,那zookeeper是如何保证事务的顺序一致性的呢?

小菜鸡的我:(完蛋了这题不会)

需要了解事务ID,即zxid。ZooKeeper的在选举时通过比较各结点的zxid和机器ID选出新的主结点的。zxid由Leader节点生成,有新写入事件时,Leader生成新zxid并随提案一起广播,每个结点本地都保存了当前最近一次事务的zxid,zxid是递增的,所以谁的zxid越大,就表示谁的数据是最新的。

ZXID的生成规则如下:

ZXID有两部分组成:

  • 任期:完成本次选举后,直到下次选举前,由同一Leader负责协调写入;
  • 事务计数器:单调递增,每生效一次写入,计数器加一。

ZXID的低32位是计数器,所以同一任期内,ZXID是连续的,每个结点又都保存着自身最新生效的ZXID,通过对比新提案的ZXID与自身最新ZXID是否相差“1”,来保证事务严格按照顺序生效的。

8、面试官:你提到了Leader,你知道Zookeeper的服务器有几种角色嘛?Zookeeper下Server工作状态又有几种呢?

小菜鸡的我:

Zookeeper 服务器角色

Zookeeper集群中,有Leader、Follower和Observer三种角色

Leader

Leader服务器是整个ZooKeeper集群工作机制中的核心,其主要工作:

  • 事务请求的唯一调度和处理者,保证集群事务处理的顺序性
  • 集群内部各服务的调度者

Follower

Follower服务器是ZooKeeper集群状态的跟随者,其主要工作:

  • 处理客户端非事务请求,转发事务请求给Leader服务器
  • 参与事务请求Proposal的投票
  • 参与Leader选举投票

Observer

Observer是3.3.0 版本开始引入的一个服务器角色,它充当一个观察者角色——观察ZooKeeper集群的最新状态变化并将这些状态变更同步过来。其工作:

  • 处理客户端的非事务请求,转发事务请求给 Leader 服务器
  • 不参与任何形式的投票
Zookeeper下Server工作状态

服务器具有四种状态,分别是 LOOKING、FOLLOWING、LEADING、OBSERVING。

  • 1.LOOKING:寻找Leader状态。当服务器处于该状态时,它会认为当前集群中没有 Leader,因此需要进入 Leader 选举状态。
  • 2.FOLLOWING:跟随者状态。表明当前服务器角色是Follower。
  • 3.LEADING:领导者状态。表明当前服务器角色是Leader。
  • 4.OBSERVING:观察者状态。表明当前服务器角色是Observer。

9、面试官:你说到服务器角色是基于ZooKeeper集群的,那你画一下ZooKeeper集群部署图吧?ZooKeeper是如何保证主从节点数据一致性的呢?

小菜鸡的我:

ZooKeeper集群部署图

ZooKeeper集群是一主多从的结构:

  • 如果是写入数据,先写入主服务器(主节点),再通知从服务器。
  • 如果是读取数据,既读主服务器的,也可以读从服务器的。
ZooKeeper如何保证主从节点数据一致性

我们知道集群是主从部署结构,要保证主从节点一致性问题,无非就是两个主要问题:

  • 主服务器挂了,或者重启了
  • 主从服务器之间同步数据~

Zookeeper是采用ZAB协议(Zookeeper Atomic Broadcast,Zookeeper原子广播协议)来保证主从节点数据一致性的,ZAB协议支持崩溃恢复和消息广播两种模式,很好解决了这两个问题:

  • 崩溃恢复:Leader挂了,进入该模式,选一个新的leader出来
  • 消息广播: 把更新的数据,从Leader同步到所有Follower

Leader服务器挂了,所有集群中的服务器进入LOOKING状态,首先,它们会选举产生新的Leader服务器;接着,新的Leader服务器与集群中Follower服务进行数据同步,当集群中超过半数机器与该 Leader服务器完成数据同步之后,退出恢复模式进入消息广播模式。Leader 服务器开始接收客户端的事务请求生成事务Proposal进行事务请求处理。

式,选一个新的leader出来

  • 消息广播: 把更新的数据,从Leader同步到所有Follower

Leader服务器挂了,所有集群中的服务器进入LOOKING状态,首先,它们会选举产生新的Leader服务器;接着,新的Leader服务器与集群中Follower服务进行数据同步,当集群中超过半数机器与该 Leader服务器完成数据同步之后,退出恢复模式进入消息广播模式。Leader 服务器开始接收客户端的事务请求生成事务Proposal进行事务请求处理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/710162.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络工程师笔记3

IP地址类型 A类 255.0.0.0B类 255.255.0.0C类 255.255.255.0D类 E类 子网掩码&#xff1a;从左到右连续的确定网络位 2-4-8-16-32-64-128-256 128 &#xff1a; 1000 0000 64 &#xff1a; 0100 0000 32 &#xff1a; 0010 0000 16 &#xff1a; 0001 0000 8 &am…

Linux和Windows集群中部署HTCondor

目录 1、集群架构 2、HTCondor版本 3、Linux系统安装 3.1、HTCondor安装 3.2、中央管理节点配置 3.3、其他节点配置 4、Windwos系统安装 5、安全配置 6、参考 1、集群架构 操作系统IP地址1*Ubuntu22.04192.168.1.742Ubuntu22.04192.168.1.603Ubuntu22.04192.168.1.6…

Squid代理服务器配置

需求是&#xff1a;通过外网机&#xff08;跳板机&#xff09;访问内网机&#xff0c;并为内网机提供访问网络的能力。 【跳板机T】【内网机N】 公网IP&#xff1a;39.107.xx.xxx 跳板机IP&#xff1a;172.17.216.234 内网机IP&#xff1a;172.17.216.241 Squid代理服务器地址…

Linux磁盘设备LVM介绍和常用场景说明

Linux常见的物理设备数据备份和负载均衡模式 1. LVM技术说明2. 相关概念3. 常用命令3.1 安装lvm命令3.2 创建分区3.3 格式化成LVM3.4 其他格式化 4. 常用场景4.1 创建LVM并挂载4.2 LVM扩容4.2.1 xfs扩容4.2.2 ext4扩容 4.2 缩减逻辑卷lv4.3 缩减vg&#xff1a;&#xff08;迁移…

设计模式(二)单例模式

单例模式&#xff1a;确保一个类只有一个实例&#xff0c;并提供了全局访问点&#xff1b;主要是用于控制共享资源的访问&#xff1b; 单例模式的实现分为懒汉式和饿汉式。 懒汉式单例在需要时才会创建&#xff0c;而饿汉式单例则在类加载时立即创建实例&#xff1b; 单例模…

印象笔记 - Markdown 入门指南

一、Markdown 是什么&#xff1f; Markdown 是一种轻量级的「标记语言」&#xff0c;创始人为约翰格鲁伯&#xff0c;用简洁的语法代替排版&#xff0c;目前被越来越多的知识工作者、写作爱好者、程序员或研究员广泛使用。其常用的标记符号不超过十个&#xff0c;相对于更为复…

一文速览深度伪造检测(Detection of Deepfakes):未来技术的守门人

一文速览深度伪造检测&#xff08;Detection of Deepfakes&#xff09;&#xff1a;未来技术的守门人 前言一、Deepfakes技术原理卷积神经网络&#xff08;CNN&#xff09;&#xff1a;细致的艺术学徒生成对抗网络&#xff08;GAN&#xff09;&#xff1a;画家与评审的双重角色…

MySQL 逗号分隔查询--find_in_set()函数

业务场景&#xff1a; 在使用MySQL的时候&#xff0c;可能的某个字段存储的是一个英文逗号分割的字符串&#xff08;这里我们不讨论表设计的合理性&#xff09;&#xff0c;如图所示&#xff1a; 我们在查询的时候需要匹配逗号分割中的某个字符串&#xff0c;该怎么查询呢&am…

CRM 系统:管理工作流程的最佳利器全面解析

一个好的CRM解决方案能够使您业务保持活力——也就是管理客户。这意味着CRM系统提供了包括流程自动化、联系人管理、多渠道管理、数据分析等一系列工具。可以说&#xff0c;CRM是企业管理工作流程的最佳工具之一。 现在&#xff0c;市场上有上万种不同类型的CRM解决方案&#…

机器学习提升秘籍:Scikit-learn学习网站全攻略!

介绍&#xff1a;是一个开源的Python机器学习库&#xff0c;它提供了一整套用于数据挖掘和数据分析的工具&#xff0c;包括各种分类、回归、聚类和降维算法以及模型评估、选择和数据预处理等功能。以下是关于Scikit-learn的一些详细介绍&#xff1a; 算法覆盖广泛&#xff1a;S…

Mendix 开发实践指南|Mendix的核心概念

在当今快速变化的技术环境中&#xff0c;Mendix平台以模型驱动开发方法&#xff0c;重新定义了应用程序的构建过程。本章内容&#xff0c;将深入探讨Mendix的几大核心概念&#xff1a;模型驱动开发、微流、纳流 、 实体模型和页面&#xff0c;旨在帮助我们全面理解Mendix平台的…

java之Bean对象

1. 什么是Bean&#xff1f; Bean被实例化的&#xff0c;是被Spring框架所管理的Java对象。 Spring容器会自动完成Bean的实例化。将所创建的的Bean自动注入到Ioc容器中以供调用。 spring框架中 IOC容器中管理的对象就是Bean对象 2. 第三方bean Bean 因为第三方bean&#xff0…

​LeetCode解法汇总2476. 二叉搜索树最近节点查询

目录链接&#xff1a; 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目&#xff1a; GitHub - September26/java-algorithms: 算法题汇总&#xff0c;包含牛客&#xff0c;leetCode&#xff0c;lintCode等网站题目的解法和代码&#xff0c;以及完整的mode类&#…

如何在Win系统从零开始搭建Z-blog网站,并将本地博客发布到公网可访问

文章目录 1. 前言2. Z-blog网站搭建2.1 XAMPP环境设置2.2 Z-blog安装2.3 Z-blog网页测试2.4 Cpolar安装和注册 3. 本地网页发布3.1. Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语 1. 前言 想要成为一个合格的技术宅或程序员&#xff0c;自己搭建网站制作网页是绕…

Linux系统编程之线程互斥锁的使用方法

文章目录 一、Linux上线程开发互斥锁概要二、创建及销毁互斥锁2.1 示例&#xff1a;主线程等待两个线程退出&#xff0c;1线程和2线程打印信息 三、互斥量的初始化问题 一、Linux上线程开发互斥锁概要 互斥量&#xff08;mutex&#xff09;从本质上来说是一把锁&#xff0c;在…

Stable Diffusion 模型分享:yayoi_mix(日本美女、真实、照片)

本文收录于《AI绘画从入门到精通》专栏&#xff0c;专栏总目录&#xff1a;点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五 下载地址 模型介绍 yayoi_mix 是一个现实模型&#xff0c;是一个针对日本女性训练及合并的模型。 条目内容类型大模型基础模型SD…

前后端项目宝塔linux部署(springboot,vue,python)

宝塔linux安装就省略了&#xff0c;网上一堆 1.部署后端 1.首先把自己项目里面打包好的的jar包上传到服务器随便一个地方&#xff0c;我这里就上传到www/wwwroot下面了&#xff0c;宝塔的文件页面可以很便携上传 2.然后到下面这个页面 选那个java环境管理装个jdk&#xff…

全网首个GDB移植手册【Howto:Porting the GUN Debugger】翻译

Howto:Porting the GUN Debugger ✍【作者】&#xff1a;电子科大不知名程序员 &#x1f4e3;【说明】&#xff1a;本文是自己在搭建mcore架构GDB时的参考的手册&#xff0c;具有很强的学习指导性&#xff0c;因原文档&#xff08;链接&#xff1a;https://www.embecosm.com/a…

企业文件图纸加密有哪些?图纸文件加密防泄密软件如何选?

在现在的市场发展中&#xff0c;对于企业的图纸文件安全问题越来越重视&#xff0c;如设计图纸&#xff0c;重要文件等&#xff0c;一旦泄漏就会给企业造成巨大的经济损失。所以对企业管理者来讲&#xff0c;如何才能选择一款好用的适合本企业的图纸文件加密软件是非常重要的&a…

网络编程难点之select、poll与epoll详解

前言 为什么需要I/O多路复用技术&#xff1f; 首先&#xff0c;I/O多路复用技术主要被应用在需要高性能的网络服务器程序中。 高性能网络服务器程序需要做的事情就是供多个客户端同时进行连接并处理客户端传送过来的数据请求&#xff1a; 对于这种情况&#xff0c;很多人自然…