Machine Vision Technology:Lecture2 Linear filtering

Machine Vision Technology:Lecture2 Linear filtering

    • Types of Images
    • Image denoising图像去噪
    • Defining convolution卷积的定义
    • Key properties卷积的关键属性
    • 卷积的其它属性
    • Annoying details
    • 卷积练习
    • Sharpening锐化
    • Gaussian Kernel
    • Noise噪声 分类
    • Gaussian noise高斯噪声
    • Reducing salt-and-pepper noise:Median filtering中值滤波
    • Sharpening revisited:再看锐化
    • Edge detection | Origin of edges
    • Characterzing edges描述边缘
    • Image gradient图像梯度

计算机视觉(本科) 北京邮电大学 鲁鹏


Types of Images

二进制图像Binary:黑白图像。0表示Black,1表示White。

灰度图像Grayscale:每个像素用范围在0-255的灰度值表示。

彩色图像Color:RGB三通道。

Image denoising图像去噪

Moving average移动平均:一种通过使用过去若干时间段的平均值计算得出的平均值。移动平均值会定期变化,最早的数值会被基于最新数据的数值所替代。

  • 用邻域的加权平均值替换每个像素
  • 权重被称为滤波器核 filter kernel

一个3x3的权重为平均值的滤波核:

在这里插入图片描述

Defining convolution卷积的定义

Let f be the image and g be the kernel. The output of convolving fwith g is denoted f * g.

f f f 为图像, g g g 为核, f f f g g g 的卷积输出定义为 f ∗ g f*g fg
( f ∗ g ) [ m , n ] = ∑ k , l f [ m − k , n − l ] g [ k , l ] (f*g)[m,n] = \sum_{k,l}{f[m-k, n-l]g[k,l]} (fg)[m,n]=k,lf[mk,nl]g[k,l]
对卷积进一步展开:
( f ∗ g ) [ m , n ] = ∑ k , l f [ m − k , n − l ] g [ k , l ] = ∑ k = − 1 k = 1 ∑ l = − 1 l = 1 f [ m − k , n − l ] g [ k , l ] \begin{align} (f*g)[m,n] &= \sum_{k,l}{f[m-k, n-l]g[k,l]} \\ &= \sum_{k=-1}^{k=1} \sum_{l=-1}^{l=1} {f[m-k, n-l]g[k,l]} \end{align} (fg)[m,n]=k,lf[mk,nl]g[k,l]=k=1k=1l=1l=1f[mk,nl]g[k,l]

假设有f为7x7,g为3x3的卷积核,此时k取-1、0、1,l取-1、0、1。

卷积示意图如下:

请添加图片描述

当m=2,n=2时:卷积操作如下
( f ∗ g ) [ 2 , 2 ] = ∑ k , l f [ 2 − k , 2 − l ] g [ k , l ] = ∑ k = − 1 k = 1 ∑ l = − 1 l = 1 f [ 2 − k , 2 − l ] g [ k , l ] = f [ 3 , 3 ] g [ − 1 , − 1 ] + f [ 3 , 2 ] g [ − 1 , 0 ] + f [ 3 , 1 ] g [ − 1 , 1 ] + f [ 2 , 3 ] g [ 0 , − 1 ] + f [ 2 , 2 ] g [ 0 , 0 ] + f [ 2 , 1 ] g [ 0 , 1 ] + f [ 1 , 3 ] g [ 1 , − 1 ] + f [ 1 , 2 ] g [ 1 , 0 ] + f [ 1 , 1 ] g [ 1 , 1 ] \begin{align} (f*g)[2,2] &= \sum_{k,l}{f[2-k, 2-l]g[k,l]} \\ &= \sum_{k=-1}^{k=1} \sum_{l=-1}^{l=1} {f[2-k, 2-l]g[k,l]} \\ &= f[3,3]g[-1,-1] + f[3,2]g[-1,0] + f[3,1]g[-1,1] \\ &+ f[2,3]g[0,-1] + f[2,2]g[0,0] + f[2,1]g[0,1] \\ &+ f[1,3]g[1,-1] + f[1,2]g[1,0] + f[1,1]g[1,1] \end{align} (fg)[2,2]=k,lf[2k,2l]g[k,l]=k=1k=1l=1l=1f[2k,2l]g[k,l]=f[3,3]g[1,1]+f[3,2]g[1,0]+f[3,1]g[1,1]+f[2,3]g[0,1]+f[2,2]g[0,0]+f[2,1]g[0,1]+f[1,3]g[1,1]+f[1,2]g[1,0]+f[1,1]g[1,1]

示意图如下:
请添加图片描述

卷积核是翻转的:ppt中的图给成了镜像翻转,但上面推导怎么是旋转180度?

请添加图片描述

Key properties卷积的关键属性

  • 线性性质Linearity: f i l t e r ( f 1 + f 2 ) = f i l t e r ( f 1 ) + f i l t e r ( f 2 ) filter(f_1 + f_2) = filter(f_1) + filter(f_2) filter(f1+f2)=filter(f1)+filter(f2)
  • 平移不变性Shift invariance: f i l t e r ( s h i f t ( f ) ) = s h i f t ( f i l t e r ( f ) ) filter(shift(f)) = shift(filter(f)) filter(shift(f))=shift(filter(f))
  • 理论结果Theoretical result:通过理论分析和计算得出的预测性结果:任何线性平移不变算子都可以表示为卷积

卷积的其它属性

  • 交换律Commutative: a ∗ b = b ∗ a a * b = b * a ab=ba

    从概念上讲,滤波器和信号没有区别

  • 结合律Associative: a ∗ ( b ∗ c ) = ( a ∗ b ) ∗ c a*(b*c)=(a*b)*c a(bc)=(ab)c

  • 分配律Distributes over addition: a ∗ ( b + c ) = a ∗ b + a ∗ c a*(b+c) = a*b + a*c a(b+c)=ab+ac

  • 标量因子提出Scalars factor out: k a ∗ b = a ∗ k b = k ( a ∗ b ) ka*b = a*kb = k(a*b) kab=akb=k(ab)

  • 同一性Identity:单位脉冲unit impulse e = [ . . . , 0 , 0 , 1 , 0 , 0 , . . . ] e = [..., 0,0,1,0,0,...] e=[...,0,0,1,0,0,...] a ∗ e = a a*e=a ae=a

Annoying details

卷积的输出结果与填充方式有关:在MATLAB中

filter2(g, f, shape)
  • shape='full':输出大小是f和g的和
  • shape='same':输出大小和f相同
  • shape='valid':输出大小是f和g的差

请添加图片描述

图像进行外推填充方式:

  • clip filter (black): imfilter(f, g, 0) 周围补一圈黑色,像素为0的黑边
  • wrap around: imfilter(f, g, ‘circular’) 图像右侧边缘补到左边,左侧边缘补到右边,类似圆筒,上下类似。
  • copy edge: imfilter(f, g, ‘replicate’) 拉伸边缘像素
  • reflect across edge: imfilter(f, g, ‘symmetric’) 镜像边缘像素

卷积练习

请添加图片描述

用右侧像素替代当前像素,相当于左移。

请添加图片描述

用box滤波器进行Blur模糊:

请添加图片描述

锐化滤波器Sharpening filter:突出和平均值的差异

请添加图片描述

Sharpening锐化

请添加图片描述

假设用 I I I 表示原图, e e e 表示单位脉冲,g表示box filter,上述过程表示如下:

原图减去滤波后的图: I ∗ e − I ∗ g = I ∗ ( e − g ) I*e - I*g = I*(e-g) IeIg=I(eg)

然后: I ∗ e + I ∗ ( e − g ) = I ∗ ( 2 e − g ) I*e + I*(e-g) = I*(2e - g) Ie+I(eg)=I(2eg)

所以可以用新的滤波器 2 e − g 2e-g 2eg 与原图进行卷积,直接得到sharpened图像。

请添加图片描述

Gaussian Kernel

为了消除边缘影响,根据邻近像素与中心的接近程度对其权重贡献。
G σ = 1 2 π σ 2 e − ( x 2 + y 2 ) 2 σ 2 G_{\sigma} = \frac{1}{2 \pi \sigma^2} e^{- \frac{(x^2 + y^2)}{2 \sigma^2}} Gσ=2πσ21e2σ2(x2+y2)
请添加图片描述

5x5高斯模版生成过程:

  • 中心坐标为(0,0),右边为(1,0),其余以此类推。
  • 将坐标的x和y带入高斯函数得到值。
  • 所有值还需要进行归一化(某个值除以所有值的和)。

模版的所有值加和为1,使模版操作不改变图像亮度。


  • 标准偏差 σ \sigma σ 决定平滑程度
  • 当固定模版的大小时:

σ \sigma σ 越小,模版的中间值越大,所占比重较大,被平滑的不那么厉害。

σ \sigma σ 越大,模版的中间值越小,所占权重变小,被平滑的厉害。

请添加图片描述

  • σ \sigma σ 固定时,模版大小改变:

请添加图片描述

当size为10时,模版有100个值,size为30时,模版有900个值,再归一化后,size小的模版权重相对更大些。

因此size较小时,被平滑的不那么厉害;size较大时,平滑的厉害。

  • 模版大小选取遵循原则:将滤波器半宽度设置为约 3 σ 3\sigma 3σ。滤波器大小为 3 σ + 3 σ + 1 3\sigma + 3\sigma + 1 3σ+3σ+1。例如 σ = 1 \sigma=1 σ=1 时,滤波器大小为3x3

高斯滤波器特点:

  • 从图像中去除“高频”成分(低通滤波器)

  • 高斯滤波与自身的卷积是另一个高斯滤波器。

    例如连续两个标准差为 σ \sigma σ 的高斯核进行卷积,等价于一个标准差为 2 σ \sqrt{2} \sigma 2 σ 高斯核进行卷积。遵循勾股定理。

    1.将原图进行参数为 σ \sigma σ 的高斯滤波: I ′ = I ∗ g σ I' = I * g_{\sigma} I=Igσ

    2.将上面结果进行参数为 σ \sigma σ 的高斯滤波: I ′ ′ = I ′ ∗ g σ I'' = I' * g_{\sigma} I′′=Igσ

    3.等价与直接将原图进行参数为 2 σ \sqrt{2} \sigma 2 σ 的高斯滤波: I ′ ′ = I ∗ g 2 σ I'' = I * g_{\sqrt{2} \sigma} I′′=Ig2 σ

  • 可分离核Separable Kernel:二维高斯函数可以被表示为两个一维高斯函数的乘积。

G σ ( x , y ) = 1 2 π σ 2 e − ( x 2 + y 2 ) 2 σ 2 = ( 1 2 π σ e − x 2 2 σ 2 ) ( 1 2 π σ e − y 2 2 σ 2 ) \begin{align} G_{\sigma}(x,y) &= \frac{1}{2 \pi \sigma^2} e^{- \frac{(x^2 + y^2)}{2 \sigma^2}} \\ &= (\frac{1}{2 \pi \sigma} e^{- \frac{x^2}{2 \sigma^2}})(\frac{1}{2 \pi \sigma} e^{- \frac{y^2}{2 \sigma^2}}) \\ \end{align} Gσ(x,y)=2πσ21e2σ2(x2+y2)=(2πσ1e2σ2x2)(2πσ1e2σ2y2)

可分离性的例子:Separability example

首先使用2D高斯滤波器对中心位置进行卷积:求得结果是65。

请添加图片描述

2D高斯滤波器可以分解为两个一维高斯滤波器的乘积:

请添加图片描述

使用分解的两个一维高斯滤波器原原图像依次卷积:行卷积核列卷积。最终得到结果仍然是65.

请添加图片描述

请添加图片描述

Separability分离性的用途:

n × n n \times n n×n 的图像,使用 m × m m \times m m×m 的核进行卷积的复杂度: O ( n 2 m 2 ) O(n^2 m^2) O(n2m2)

如果使用分离的卷积的复杂度: O ( n 2 m ) + O ( n m ) = O ( n 2 m ) O(n^2 m) + O(n m) = O(n^2 m) O(n2m)+O(nm)=O(n2m)

Noise噪声 分类

  • 椒盐噪声Salt and pepper noise:包含随机出现的黑色和白色像素。
  • 脉冲噪声Impulse noise:包含随机出现的白色像素。
  • 高斯噪声Gaussian noise:从高斯正态分布得出的强度变化

请添加图片描述

Gaussian noise高斯噪声

高斯噪声图 f ( x , y ) f(x,y) f(x,y) 的产生如下:
f ( x , y ) = f ˉ ( x , y ) + η ( x , y ) f(x, y) = \bar{f}(x, y) + \eta(x,y) f(x,y)=fˉ(x,y)+η(x,y)
其中 f ˉ ( x , y ) \bar{f}(x,y) fˉ(x,y) 为理想的图像, η ( x , y ) \eta(x,y) η(x,y) 为噪声处理,所有噪声iid于正态分布:
η ( x , y ) ∼ N ( μ , σ ) \eta(x,y) \sim \mathbf{N}(\mu, \sigma) η(x,y)N(μ,σ)
假设:独立,均值为0的噪声

请添加图片描述

  • 减少高斯噪声Reducing Gaussian noise:使用高斯滤波器

请添加图片描述

上图中第一行是 σ \sigma σ 取 0.05、0.1、0.2 产生的高斯噪声图。也就对应没有平滑的图。

第二行是使用 σ = 1 \sigma = 1 σ=1 的高斯滤波结果,此时高斯核大小为 7 × 7 7 \times 7 7×7

第三行是使用 σ = 2 \sigma = 2 σ=2 的高斯滤波结果,此时高斯核大小为 13 × 13 13 \times 13 13×13

结论:使用较大标准差的平滑可以抑制噪声, 但也会使图像模糊。

Reducing salt-and-pepper noise:Median filtering中值滤波

中值滤波器通过选择窗口中的中值强度对窗口进行操作。

请添加图片描述

中值滤波是非线性滤波。对异常值具有稳健性的优点:Robustness to outliers

请添加图片描述

下面是有椒盐噪声的图和均值滤波后的图:

请添加图片描述

Sharpening revisited:再看锐化

请添加图片描述

拉普拉斯高斯:

请添加图片描述

Edge detection | Origin of edges

  • 边缘检测目标:识别图像中的突变(不连续)。直观地说,大多数来自图像的语义和形状信息都可以编码在边缘中。

各种边的起源(种类):边缘是由多种因素造成的

请添加图片描述

  • surface normal discontinuity表面法向不连续:也就是面上的不连续,两个面的交界处产生的边。
  • depth discontinuity间断面深度:深度上的边缘,上面瓶子因为是圆形的,本身没有边,但图像只能显示其中的一部分,由于深度上的不连续形成的边。
  • surface color discontinuity表面颜色不连续:文字。
  • illumination discontinuity照明不连续:阴影产生的边。

Characterzing edges描述边缘

边缘是图像强度函数中快速变化的地方:一阶导的极值点。

请添加图片描述

对于2D函数 f ( x , y ) f(x,y) f(x,y) 的偏导数定义:
∂ f ( x , y ) ∂ x = lim ⁡ ϵ → 0 f ( x + ϵ , y ) − f ( x , y ) ϵ \frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon,y) - f(x,y)}{\epsilon} xf(x,y)=ϵ0limϵf(x+ϵ,y)f(x,y)
对于离散数据,我们可以使用有限差分进行近似:
∂ f ( x , y ) ∂ x ≈ f ( x + 1 , y ) − f ( x , y ) 1 \frac{\partial f(x,y)}{\partial x} \approx \frac{f(x + 1,y) - f(x,y)}{1} xf(x,y)1f(x+1,y)f(x,y)
为了实现上面的卷积,相关的过滤器如何设计?

请添加图片描述

左图的滤波器: [ − 1 , 1 ] [-1,1] [1,1] 。水平方向卷积,求得垂直方向边缘。

右图的滤波器: [ − 1 , 1 ] T [-1,1]^T [1,1]T [ 1 , − 1 ] T [1,-1]^T [1,1]T 。垂直方向卷积,求得水平方向边缘。

Image gradient图像梯度

图像的梯度是由偏导数组成的向量:
∇ f = [ ∂ f ∂ x , ∂ f ∂ y ] \nabla f = [\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}] f=[xf,yf]

  • 梯度方向指向信号变化最大的方向,也就是指向图像强度增加最快的方向。
  • 梯度方向与边缘垂直。

请添加图片描述

梯度方向定义:
θ = t a n − 1 ( ∂ f ∂ y / ∂ f ∂ x ) \theta = tan^{-1} (\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}) θ=tan1(yf/xf)
边缘强度由梯度幅度给出:The edge strength is given by the gradient magnitude
∣ ∣ ∇ f ∣ ∣ = ( ∂ f ∂ x ) 2 + ( ∂ f ∂ y ) 2 || \nabla f || = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2} ∣∣∇f∣∣=(xf)2+(yf)2

  • 使用梯度幅值来描述是否是边的可能性,幅值越大,偏导数越大,偏导数越有可能是极值点,则该点越有可能是边。这也叫做边缘强度。

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/709784.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HTTP详解(HTTP的特点,状态码,工作原理,GET和POST的区别,如何解决无状态通信)!!!

文章目录 一、HTTP协议简介二、HTTP的主要特点三、HTTP之URL四、Request和Respons五、HTTP的状态码六、HTTP工作原理七、GET和POST请求的区别八、解决HTTP无状态通信——Cookie和Session 一、HTTP协议简介 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议&…

iOS App冷启动优化:Before Main阶段

iOS应用冷启动时,在 UIApplicationMain(argc, argv, nil, appDelegateClassName)方法执行前,主要经历以下阶段: 1. 执行exec()启动应用程序进程 2. 加载可执行文件,即将应用程序的Mach-O文件加载到内存…

31-树-找树左下角的值

这是树的第31篇算法,力扣链接。 给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。 示例 1: 输入: root [2,1,3] 输出: 1 拿到这道题的第一想法,我可以层级遍历选取最左节点。 func f…

R语言数据可视化之美专业图表绘制指南(增强版):第1章 R语言编程与绘图基础

第1章 R语言编程与绘图基础 目录 第1章 R语言编程与绘图基础前言1.1 学术图表的基本概念1.1.1 学术图表的基本作用1.1.2基本类别1.1.3 学术图表的绘制原则 1.2 你为什么要选择R1.3 安装 前言 这是我第一次在博客里展示学习中国作者的教材的笔记。我选择这本书的依据是作者同时…

C#学习:初识各类应用程序

编写我们第一个程序——Hello,World! 1.编程不是“学”出来的,而是“练”出来的 2.在反复应用中积累,忽然有一天就会顿悟 3.学习原则: 3.1从感官到原理 3.2从使用别人的到创建自己的 3.3必需亲自动手 3.4必需学以致用,紧跟实际…

计算机网络原理--传输层

🎥 个人主页:Dikz12📕格言:那些在暗处执拗生长的花,终有一日会馥郁传香欢迎大家👍点赞✍评论⭐收藏 目录 TCP/IP五层(或四层)模型 传输层 TCP和UDP的区别 UDP协议 校验和 如何…

Linux 基础之 vmstat 命令详解

文章目录 一、前言二、使用说明2.1 vmstat [delay/count/d/D/t/w]2.2.vm模式的字段 一、前言 vmstat(VirtualMeomoryStatistics,虚拟内存统计)是一个不错的 Linux/Unix 监控工具,在性能测试中除了top外也是比较常用的工具之一,它可以监控操作…

同局域网共享虚拟机(VMware)

一、前言 首先我们先来了解下 VMware 的三种网络模式桥接模式、NAT模式、仅主机模式,网络类型介绍详情可以参考下我之前的文档 Linux系统虚拟机安装(上)第三章 - 第9步指定网络类型。了解三种网络模式的原理之后,再来剖析下需求&…

Python爬虫——Urllib库-上

这几天都在为了蓝桥杯做准备,一直在刷算法题,确实刷算法题的过程是及其的枯燥且枯燥的。于是我还是决定给自己找点成就感出来,那么Python的爬虫就这样开始学习了。 注:文章源于观看尚硅谷爬虫视频后笔记 目录 Urllib库 基本使…

自定义View中的ListView和ScrollView嵌套的问题

当我们在使用到ScrollView和ListView的时候可能会出现显示不全的问题。那我们可以进行以下分析 ScrollView在测量子布局的时候会用UNSPECIFIED。通过源码观察, 在ScrollView的onMeasure方法中 Overrideprotected void onMeasure(int widthMeasureSpec, int heightMe…

MySQL进阶:大厂高频面试——各类SQL语句性能调优经验

👨‍🎓作者简介:一位大四、研0学生,正在努力准备大四暑假的实习 🌌上期文章:MySQL进阶:强推,冲大厂必精通!MySQL索引底层(BTree)、性能分析、使用…

HTTP笔记(五)

个人学习笔记(整理不易,有帮助点个赞) 笔记目录:学习笔记目录_pytest和unittest、airtest_weixin_42717928的博客-CSDN博客 目录 一:HTTP报文首部 (1)HTTP请求报文 (2&#xff09…

Kaggle 竞赛入门

打比赛不用写算法源码,应用的时候不用自己写。学习的时候可以自己写。 Kaggle 竞赛入门 认识 Kaggle 平台Kaggle竞赛知识前提结构化数据前提图像数据文本数据 Kaggle竞赛套路一个赛题的完整流程 认识 Kaggle 平台 Kaggle 官网 主页,比赛(数据…

复现nerfstudio并训练自己制作的数据集

网站:安装 - nerfstudio GitHub - nerfstudio-project/nerfstudio:NeRF 的协作友好工作室 安装之前要确保电脑上已经有CUDA11.8或以上版本(更高版本的可以安装11.8的toolkit) 创建环境 conda create --name nerfstudio -y pyt…

浅谈 Linux 网络编程 - Server 端模型、sockaddr、sockaddr_in 结构体

文章目录 前言前置知识Server 端核心模型 【重点】相关函数 【重点】socket 函数bind 函数listen 函数accept 函数close 函数 sockaddr 数据结构 【重点】 前言 本文主要是对 Linux 网络编程中,Server 端的模型、相关函数 以及 sockaddr、sockaddr_in 结构体做介绍…

黑马程序员——接口测试——day05——Request库、Cookie、Session、UnitTest框架

目录: Requests库 Requests库安装和简介设置http请求语法应用案例 案例1案例2案例3案例4Cookie Cookie简介CookieSession认证方式案例5-看演示,此代码不需实现Session Session简介Session自动管理Cookie案例6面试题Cookie和Session区别获取指定响应数据…

300分钟吃透分布式缓存(拉钩教育总结)

开篇寄语 开篇寄语:缓存,你真的用对了吗? 你好,我是你的缓存老师陈波,可能大家对我的网名 fishermen 会更熟悉。 我是资深老码农一枚,经历了新浪微博从起步到当前月活数亿用户的大型互联网系统的技术演进…

Linux|centos7|yum和编译安装ImageMagick记录

一, yum安装imagemagick imagemagick这个软件是图像文件的处理神器,可以文字转图像以及图像的剪辑等等工作,也是配合人工智能工程的不可或缺的工具,具体的用处和特点就不在这里废话了,有兴趣的百度就行了 本次是在…

SpringBoot底层原理

SpringBoot底层原理 一 配置优先级 1.配置方式 Springboot中支持三种配置方式,分别为: application.propertiesapplication.ymlapplication.yaml 2.配置优先级 当存在多份配置文件时,配置文件会按照它们的优先级生效。 优先级从高到底…

蓝桥杯-灌溉

参考了大佬的解题思路&#xff0c;先遍历一次花园&#xff0c;找到所有的水源坐标&#xff0c;把它们存入 “水源坐标清单” 数组内&#xff0c;再读取数组里的水源坐标进行扩散。 #include <iostream> using namespace std; int main() {int n,m,t,r,c,k,ans0,list_i0;…