【目标检测】理论篇(3)YOLOv5实现

Yolov5网络构架实现

import torch
import torch.nn as nnclass SiLU(nn.Module):@staticmethoddef forward(x):return x * torch.sigmoid(x)def autopad(k, p=None):if p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k] return pclass Focus(nn.Module):def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groupssuper(Focus, self).__init__()self.conv = Conv(c1 * 4, c2, k, s, p, g, act)def forward(self, x):# 320, 320, 12 => 320, 320, 64return self.conv(# 640, 640, 3 => 320, 320, 12torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))class Conv(nn.Module):def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):super(Conv, self).__init__()self.conv   = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)self.bn     = nn.BatchNorm2d(c2, eps=0.001, momentum=0.03)self.act    = SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())def forward(self, x):return self.act(self.bn(self.conv(x)))def fuseforward(self, x):return self.act(self.conv(x))class Bottleneck(nn.Module):# Standard bottleneckdef __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansionsuper(Bottleneck, self).__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_, c2, 3, 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper(C3, self).__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))class SPP(nn.Module):# Spatial pyramid pooling layer used in YOLOv3-SPPdef __init__(self, c1, c2, k=(5, 9, 13)):super(SPP, self).__init__()c_ = c1 // 2  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])def forward(self, x):x = self.cv1(x)return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))class CSPDarknet(nn.Module):def __init__(self, base_channels, base_depth, phi, pretrained):super().__init__()#-----------------------------------------------##   输入图片是640, 640, 3#   初始的基本通道base_channels是64#-----------------------------------------------##-----------------------------------------------##   利用focus网络结构进行特征提取#   640, 640, 3 -> 320, 320, 12 -> 320, 320, 64#-----------------------------------------------#self.stem       = Focus(3, base_channels, k=3)#-----------------------------------------------##   完成卷积之后,320, 320, 64 -> 160, 160, 128#   完成CSPlayer之后,160, 160, 128 -> 160, 160, 128#-----------------------------------------------#self.dark2 = nn.Sequential(# 320, 320, 64 -> 160, 160, 128Conv(base_channels, base_channels * 2, 3, 2),# 160, 160, 128 -> 160, 160, 128C3(base_channels * 2, base_channels * 2, base_depth),)#-----------------------------------------------##   完成卷积之后,160, 160, 128 -> 80, 80, 256#   完成CSPlayer之后,80, 80, 256 -> 80, 80, 256#                   在这里引出有效特征层80, 80, 256#                   进行加强特征提取网络FPN的构建#-----------------------------------------------#self.dark3 = nn.Sequential(Conv(base_channels * 2, base_channels * 4, 3, 2),C3(base_channels * 4, base_channels * 4, base_depth * 3),)#-----------------------------------------------##   完成卷积之后,80, 80, 256 -> 40, 40, 512#   完成CSPlayer之后,40, 40, 512 -> 40, 40, 512#                   在这里引出有效特征层40, 40, 512#                   进行加强特征提取网络FPN的构建#-----------------------------------------------#self.dark4 = nn.Sequential(Conv(base_channels * 4, base_channels * 8, 3, 2),C3(base_channels * 8, base_channels * 8, base_depth * 3),)#-----------------------------------------------##   完成卷积之后,40, 40, 512 -> 20, 20, 1024#   完成SPP之后,20, 20, 1024 -> 20, 20, 1024#   完成CSPlayer之后,20, 20, 1024 -> 20, 20, 1024#-----------------------------------------------#self.dark5 = nn.Sequential(Conv(base_channels * 8, base_channels * 16, 3, 2),SPP(base_channels * 16, base_channels * 16),C3(base_channels * 16, base_channels * 16, base_depth, shortcut=False),)if pretrained:url = {'s' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_s_backbone.pth','m' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_m_backbone.pth','l' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_l_backbone.pth','x' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_x_backbone.pth',}[phi]checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", model_dir="./model_data")self.load_state_dict(checkpoint, strict=False)print("Load weights from ", url.split('/')[-1])def forward(self, x):x = self.stem(x)x = self.dark2(x)#-----------------------------------------------##   dark3的输出为80, 80, 256,是一个有效特征层#-----------------------------------------------#x = self.dark3(x)feat1 = x#-----------------------------------------------##   dark4的输出为40, 40, 512,是一个有效特征层#-----------------------------------------------#x = self.dark4(x)feat2 = x#-----------------------------------------------##   dark5的输出为20, 20, 1024,是一个有效特征层#-----------------------------------------------#x = self.dark5(x)feat3 = xreturn feat1, feat2, feat3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/70827.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《C++设计模式》——结构型

前言 结构模式可以让我们把很多小的东西通过结构模式组合起来成为一个打的结构,但是又不影响各自的独立性,尽可能减少各组件之间的耦合。 Adapter Class/Object(适配器) Bridge(桥接) Composite(组合) Decorator(装饰) 动态…

【5】openGL使用宏和函数进行错误检测

当我们编写openGL程序,没有报编译链接错误,但是运行结果是黑屏,这不是我们想要的。 openGL提供了glGetError 来检查错误,我们可以通过在运行时进行打断点查看glGetError返回值,得到的是一个十进制数,将其转…

C++(Liunx) 使用cut截 取出Ubuntu用户的家目录,要求:不能使用“:“作为分割.

使用cut截 取出Ubuntu用户的家目录,要求:不能使用":"作为分割

【C++技能树】多态解析

Halo,这里是Ppeua。平时主要更新C,数据结构算法,Linux与ROS…感兴趣就关注我bua! 文章目录 0.多态的概念0.1 多态的定义 1. 重写2.Final与Override3.抽象类4.多态中的内存分布.4.1虚表存在哪里? 5.多态调用原理5.1 动态绑定与静…

《向量数据库指南》——AI原生向量数据库Milvus Cloud 2.3 Enhancement

Enhancement MMap 技术提升数据容量 MMap 是 Linux 内核提供的技术,可以将一块磁盘空间映射到内存,这样一来我们便可以通过将数据加载到本地磁盘再将磁盘 mmap 到内存的方案提升单机数据的容量,经过测试使用 MMap 技术后数据容量提升了 1 倍而性能下降在20% 以内,大大节约了…

sqlibs安装及复现

sqlibs安装 安装phpstudy后,到github上获取sqlibs源码 sqli-labs项目地址—Github获取:GitHub - Audi-1/sqli-labs: SQLI labs to test error based, Blind boolean based, Time based. 在phpstudy本地文件中的Apache目录中解压上方下载的源码。 将sq…

08.SCA-CNN

目录 前言泛读摘要IntroductionRelated Work 精读Spatial and Channel-wise Attention CNNOverviewSpatial AttentionChannel-wise AttentionChannel-SpatialSpatial-Channel ExperimentsDataset and Metric设置 评估Channel-wise Attention(问题1)评估M…

momentjs实现DatePicker时间禁用

momentjs是一个处理时间的js库,简洁易用。 浅析一下, momentjs 在vue中对DatePicker时间组件的禁用实践。 一,npm下载 npm install moment --save二,particles.json中 "dependencies": {"axios": "^…

单片机第三季-第一课:STM32基础

官方网址:STMCU中文官网 STM32系列分类: 型号命名原则: STM32F103系列: 涉及到的几个概念: DMA:Direct Memory Access,直接存储器访问。DMA传输将数据从一个地址空间复制到另一个地址空间&…

系统学习Linux-zabbix监控平台

一、zabbix的基本概述 zabbix是一个监控软件,其可以监控各种网络参数,保证企业服务架构安全运营,同时支持灵活的告警机制,可以使得运维人员快速定位故障、解决问题。zabbix支持分布式功能,支持复杂架构下的监控解决方…

DataTable扩展 列转行方法(2*2矩阵转换)

源数据 如图所示 // <summary>/// DataTable扩展 列转行方法&#xff08;2*2矩阵转换&#xff09;/// </summary>/// <param name"dtSource">数据源</param>/// <param name"columnFilter">逗号分隔 如SDateTime,PM25,PM10…

【QT】使用qml的QtWebEngine遇到的一些问题总结

在使用qt官方的一些QML的QtWebEngine相关的例程的时候&#xff0c;有时在运行会报如下错误&#xff1a; WebEngineContext used before QtWebEngine::initialize() or OpenGL context creation failed 这个问题在main函数里面最前面加上&#xff1a; QCoreApplication::setAttr…

Linux下的系统编程——认识进程(七)

前言&#xff1a; 程序是指储存在外部存储(如硬盘)的一个可执行文件, 而进程是指处于执行期间的程序, 进程包括 代码段(text section) 和 数据段(data section), 除了代码段和数据段外, 进程一般还包含打开的文件, 要处理的信号和CPU上下文等等.下面让我们开始对Linux进程有个…

利用transform和border 创造简易图标,以适应uniapp中多字体大小情况下的符号问题

heml: <text class"icon-check"></text> css: .icon-check {border: 2px solid black;border-left: 0;border-top: 0;height: 12px;width: 6px;transform-origin: center;transform: rotate(45deg);} 实际上就是声明一个带边框的div 将其中相邻的两边去…

java八股文面试[数据库]——主键的类型自增还是UUID

auto_increment的优点&#xff1a; 字段长度较uuid小很多&#xff0c;可以是bigint甚至是int类型&#xff0c;这对检索的性能会有所影响。 在写的方面&#xff0c;因为是自增的&#xff0c;所以主键是趋势自增的&#xff0c;也就是说新增的数据永远在后面&#xff0c;这点对于…

Android之 SVG绘制

一 SVG介绍 1.1 SVG&#xff08;Scalable Vector Graphics&#xff09;是可缩放矢量图形的缩写&#xff0c;它是一种图形格式&#xff0c;其中形状在XML中指定&#xff0c; 而XML又由SVG查看器呈现。 1.2 SVG可以区别于位图&#xff0c;放大可以做到不模糊&#xff0c;可以做…

Vagrant + VirtualBox + CentOS7 + WindTerm 5分钟搭建本地linux开发环境

1、准备阶段 将环境搭建所需要的工具和文件下载好&#xff08;页面找不到可参考Tips部分&#xff09; Vagrant 版本&#xff1a;vagrant_2.2.18_x86_64.msi 链接&#xff1a;https://developer.hashicorp.com/vagrant/downloads VirtualBox 版本&#xff1a;VirtualBox-6.1.46…

无涯教程-JavaScript - DAYS360函数

描述 DAYS360函数返回基于360天的年份(十二个月为30天)的两个日期之间的天数,该天数用于会计计算。 语法 DAYS360 (start_date,end_date,[method])争论 Argument描述Required/OptionalStart_dateThe two dates between which you want to know the number of days.Required…

基于SpringBoot的医院挂号系统

基于SpringBootVue的医院挂号、预约、问诊管理系统&#xff0c;前后端分离 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringBoot、Vue、Mybaits Plus、ELementUI工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 角色&#xff1a;管理员、用户、医生 管…

Android Jetpack Compose 用计时器demo理解Compose UI 更新的关键-------状态管理(State)

目录 概述1.什么是状态2.什么是单向数据流3.理解Stateless和Stateful4.使用Compose实现一个计数器4.1 实现计数器4.2 增加组件复用性-----状态上提 总结 概述 我们都知道了Compose使用了声明式的开发范式&#xff0c;在这样的范式中&#xff0c;UI的职责更加的单一&#xff0c…